Journal of the Chinese Ceramic Society, Volume. 51, Issue 1, 40(2023)
Effect of Exfoliation Method on the Photocatalytic Performances of Graphitic Carbon Nitride for Pollutant Degradation
[1] [1] WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible?light[J]. Nat Mater, 2009, 8(1): 76-80.
[2] [2] GENG A, ZHANG Y, XU X, et al. Photocatalytic degradation of organic dyes on Li-doped graphitic carbon nitrides[J]. J Mater Sci Mater Electron, 2020, 31(5): 3869-3875.
[3] [3] CHEN L, ZHU D, LI J, et al. Sulfur and potassium co-doped graphitic carbon nitride for highly enhanced photocatalytic hydrogen evolution[J]. Appl Catal B, 2020, 273: 119050.
[4] [4] ZHAO D, DONG C L, WANG B, et al. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution[J]. Adv Mater, 2019, 31(43): 1903545.
[5] [5] LIN W, LU K, ZHOU S, et al. Defects remodeling of g-C3N4 nanosheets by fluorine-containing solvothermal treatment to enhance their photocatalytic activities[J]. Appl Surf Sci, 2019, 474: 194-202.
[6] [6] GENG Y, CHEN D, LI N, et al. Z-scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide[J]. Appl Catal B, 2021, 280: 119409.
[7] [7] HUANG H, LIU C, OU H, et al. Self-sacrifice transformation for fabrication of type-I and type-II heterojunctions in hierarchical BixOyIz/g-C3N4 for efficient visible-light photocatalysis[J]. Appl Surf Sci, 2019, 470: 1101-1110.
[8] [8] WU M, ZHANG J, HE B-B, et al. In-situ construction of coral-like porous P-doped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution[J]. Appl Catal B, 2019, 241: 159-166.
[9] [9] GENG A, LIN H, ZHAO Y, et al. Self-assembly of hollow, pompon-like and nanosheet-structured carbon nitride for photodegradation of tetracycline hydrochloride[J]. Part Part Syst Charact, 2022, 39(1): 2100235.
[10] [10] NIU P, ZHANG L, LIU G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Adv Funct Mater, 2012, 22(22): 4763-4770.
[11] [11] MOHAMED N A, SAFAEI J, ISMAIL A F, et al. Fabrication of exfoliated graphitic carbon nitride, (g-C3N4) thin film by methanolic dispersion[J]. J Alloys Compd, 2020, 818: 152916.
[12] [12] XU J, ZHANG L, SHI R. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis[J]. J Mater Chem A, 2013, 1: 14766-14772.
[13] [13] YANG S, GONG Y, ZHANG J, et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light[J]. Adv Mater, 2013, 25(17): 2452-2456.
[16] [16] YANG Qiushi, HU Shaonian, YAO Yaxuan, et al. Chin J Catal, 2021, 42(1): 217-224.
[17] [17] MA T, SHEN Q, XUE B Z J, et al. Facile synthesis of Fe-doped g-C3N4 for enhanced visible-light photocatalytic activity[J]. Inorg Chem Commun, 2019, 107: 107451.
[18] [18] ZHU J, XIAO P, LI H, et al. Graphitic carbon nitride: Synthesis, properties, and applications in catalysis[J]. ACS Appl Mater Interfaces, 2014, 6 19: 16449-16465.
[19] [19] XIAO Y, GENG A, ZHU J, et al. Metal doped graphitic carbon nitride prepared by a bubbling template method for photo-degradation of organic pollutants[J]. J Phys D: Appl Phys, 2022, 55(43): 434002.
[20] [20] YANG B, ZHAO J, YANG W, et al. A step-by-step synergistic stripping approach toward ultra-thin porous g-C3N4 nanosheets with high conduction band position for photocatalystic CO2 reduction[J]. Adv Colloid Interface Sci, 2021, 589: 179-186.
[21] [21] KADAM A N, KIM H, LEE S-W. Low-temperature in situ fabrication of porous S-doped g-C3N4 nanosheets using gaseous-bubble template for enhanced visible-light photocatalysis[J]. Ceram Intl, 2020, 46(18, Part A): 28481-28489.
[22] [22] XU J, WANG Y, ZHU Y. Nanoporous Graphitic Carbon Nitride with Enhanced Photocatalytic Performance[J]. Langmuir, 2013, 29(33): 10566-10572.
[24] [24] LI G, XIE Z, CHAI S, et al. A facile one-step fabrication of holey carbon nitride nanosheets for visible-light-driven hydrogen evolution[J]. Appl Catal B, 2021, 283: 119637.
[25] [25] ZHAO C, SHI C, LI Q, et al. Nitrogen vacancy-rich porous carbon nitride nanosheets for efficient photocatalytic H2O2 production[J]. Mater Today Energy, 2022, 24: 100926.
[26] [26] XU X, LIN H, XIAO P, et al. Construction of ag-bridged z-scheme LaFe0.5Co0.5O3/Ag10/Graphitic carbon nitride heterojunctions for photo-fenton degradation of tetracycline hydrochloride: Interfacial electron effect and reaction mechanism[J]. Adv Mater Interfaces, 2022, 9(5): 2101902.
[27] [27] DONG F, LI Y, WANG Z, et al. Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation[J]. Appl Surf Sci, 2015, 358: 393-403.
[28] [28] LIU J, WEI Z, FANG W, et al. Enhanced photocatalytic hydrogen evolution of the hydrogenated deficient g-C3N4 via surface hydrotreating[J]. Chem Cat Chem, 2019, 11(24): 6275-6281.
[29] [29] BAO J, BAI W, WU M, et al. Template-mediated copper doped porous g-C3N4 for efficient photodegradation of antibiotic contaminants[J]. Chemosphere, 2022, 293: 133607.
[31] [31] FAISAL M, JALALAH M, HARRAZ F, et al. Au nanoparticles-doped g-C3N4 nanocomposites for enhanced photocatalytic performance under visible light illumination[J]. Ceram Intl, 2020, 46(14): 22090-22101.
Get Citation
Copy Citation Text
ZHU Junjiang, XIAO Yao, YAN Yayu, XU Xuelian, XIAO Ping, HE Zhiyan. Effect of Exfoliation Method on the Photocatalytic Performances of Graphitic Carbon Nitride for Pollutant Degradation[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 40
Special Issue:
Received: Jul. 19, 2022
Accepted: --
Published Online: Mar. 10, 2023
The Author Email: Junjiang ZHU (jjzhu@wtu.edu.cn)