Optics and Precision Engineering, Volume. 20, Issue 11, 2540(2012)
Visual object tracking combined normal hedge and kernel sparse representation classification
[1] [1] JAWARD M, BULL D, CANAGARAJAH N. Sequential monte carlo methods for contour tracking of contaminant clouds[J]. Signal Processing, 2010, 90(1):249-260.
[2] [2] CHEN Q, SUN Q, HENG P A, XIA D S, et al.. Two-stage object tracking method based on kernel and active contour[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(4):605-609.
[3] [3] JING L, VADAKKEPAT P. Interacting mcmc particle filter for tracking maneuvering target[J]. Digital Signal Processing, 2010, 20(2):561-574.
[4] [4] HAN Z, JIAO J, ZHANG B, et al.. Visual object tracking via sample-based adaptive sparse representation (AdaSR)[J]. Pattern Recognition, 2011, 44(9):2170-2183.
[5] [5] XUE M, LING H B. Robust visual tracking and vehicle classification via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11):2259-2272.
[6] [6] WANG Q, CHEN F, XU X L, et al.. Online discriminative object tracking with local sparse representation [C]. IEEE Workshop on Applications of Computer Vision (WACV), 2012:425-432.
[7] [7] RIGAMONTI R, BROWN M A, LEPETIT V. Are sparse representations really relevant for image classification [C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011:1545-1552.
[8] [8] ZHANG L, YANG M, FENG X CH. Sparse representation or collaborative representation:Which helps face recognition [J]. IEEE International Conference on Computer Vision, 2011:471-478.
[9] [9] HUANG K, AVIYENTE S. Sparse representation for signal classification [J]. Advances in neural information processing, 2007, 16(15): 609-617.
[10] [10] GAO SH G, IVOR W T, CHIA L T. Kernel sparse representation for image classification and face recognition [J]. Lecture Notes in Computer Science, 2010, 63(14): 1-14.
[11] [11] KANG C C, LIAO SH C, XIANG SH M, et al.. Kernel sparse representation with local patterns for face recognition [C]. 18th IEEE International Conference on Image Processing, 2011:3009-3012.
[14] [14] LI R, MAO L, ZHANG J R. Particle filter resampling based on optimized combinatorial algorithm [C]. International Symposium on IT in Medicine and Education (ITME), 2011, 2:27-30.
[15] [15] CHAUDHURI K, FREUND Y, HSU D, A parameter-free hedging algorithm[C]. Advances in Neural Information Processing Systems, 2009: 297-305.
[16] [16] ETTINGER E, FREUND Y. Particle Filtering on the Audio Localization Manifold, Arxiv preprint arXiv:1003.0659, 2010.
[17] [17] DONOHO D L.For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics [J]. 2006, 59(6):797-829.
[18] [18] NESTEROV Y. Efficiency of coordinate descent methods on huge-scale optimization problems [J]. SIAM Journal on Optimization, 2012, 22(2):341-32.
[19] [19] PETER RICHTRIK, MARTIN TAK, Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[R]. Arxiv preprint arXiv:1107.2848, 2011.
[20] [20] ZHU M Q, WANG ZH L, CHEN Z H. Visual tracking algorithm based on grey prediction model and particle filter[J]. Control and Decision, 2012, 27(1):53-57. (in Chinese)
Get Citation
Copy Citation Text
KUANG Jin-jun, CHAI Yi, XIONG Qing-yu. Visual object tracking combined normal hedge and kernel sparse representation classification[J]. Optics and Precision Engineering, 2012, 20(11): 2540
Category:
Received: May. 4, 2012
Accepted: --
Published Online: Nov. 28, 2012
The Author Email: Jin-jun KUANG (kuangjinjun@gmail.com)