Journal of Synthetic Crystals, Volume. 54, Issue 1, 77(2025)
Electronic Structure and Optical Property of 4d Transition Metal Doped Monolayer WS2
[1] [1] LI C X, SANG D D, GE S H, et al. Recent excellent optoelectronic applications based on two-dimensional WS2 nanomaterials: a review[J]. Molecules, 2024, 29(14): 3341.
[2] [2] FU X Q, QIAO Z R, ZHOU H Y, et al. Defect engineering in transition metal dichalcogenide-based gas sensors[J]. Chemosensors, 2024, 12(6): 85.
[3] [3] ZHENG W, LIU X H, XIE J Y, et al. Emerging van der Waals junctions based on TMDs materials for advanced gas sensors[J]. Coordination Chemistry Reviews, 2021, 447: 214151.
[4] [4] NI Z Y, WEN H, ZHANG S Q, et al. Recent advances in layered tungsten disulfide as electrocatalyst for water splitting[J]. ChemCatChem, 2020, 12(20): 4962-4999.
[5] [5] ZHAO Y, YAN B, LIANG X X, et al. Engineering of vacancy defects in WS2 monolayer by rare-earth (Er, Tm, Lu) doping: a first-principles study[J]. Physica Status Solidi (b), 2023, 260(7): 2300055.
[6] [6] BIANCHI M G, RISPLENDI F, RE FIORENTIN M, et al. Engineering the electrical and optical properties of WS2 monolayers via defect control[J]. Advanced Science, 2024, 11(4): 2305162.
[7] [7] LUO M, SHEN Y H. Effect of strain on magnetic coupling in Ga-doped WS2 monolayer: ab initio study[J]. Journal of Superconductivity and Novel Magnetism, 2018, 31(6): 1801-1805.
[8] [8] CHEN P, CHENG C, SHEN C, et al. Band evolution of two-dimensional transition metal dichalcogenides under electric fields[J]. Applied Physics Letters, 2019, 115(8): 083104.
[9] [9] THRIPURANTHAKA M, LATE D J. Temperature dependent phonon shifts in single-layer WS2[J]. ACS Applied Materials & Interfaces, 2014, 6(2): 1158-1163.
[10] [10] COLEMAN J N, LOTYA M, O’NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571.
[11] [11] OKADA M, SAWAZAKI T, WATANABE K, et al. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride[J]. ACS Nano, 2014, 8(8): 8273-8277.
[12] [12] RONG Y M, FAN Y, LEEN KOH A, et al. Controlling sulphur precursor addition for large single crystal domains of WS2[J]. Nanoscale, 2014, 6(20): 12096-12103.
[13] [13] AR H, ZDEN A, YORULMAZ B, et al. A comparative device performance assesment of CVD grown MoS2 and WS2 monolayers[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(10): 8785-8792.
[14] [14] ZHOU W, ZOU X L, NAJMAEI S, et al. Intrinsic structural defects in monolayer molybdenum disulfide[J]. Nano Letters, 2013, 13(6): 2615-2622.
[15] [15] JARIWALA D, SANGWAN V K, LAUHON L J, et al. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides[J]. ACS Nano, 2014, 8(2): 1102-1120.
[16] [16] PAM M E, HU J P, ANG Y S, et al. High-concentration niobium-substituted WS2 basal domains with reconfigured electronic band structure for hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 34862-34868.
[21] [21] JIN Y Y, ZENG Z Y, XU Z W, et al. Synthesis and transport properties of degenerate P-type Nb-doped WS2 monolayers[J]. Chemistry of Materials, 2019, 31(9): 3534-3541.
[22] [22] TANG L, XU R Z, TAN J Y, et al. Modulating electronic structure of monolayer transition metal dichalcogenides by substitutional Nb-doping[J]. Advanced Functional Materials, 2021, 31(5): 2006941.
[23] [23] ZHAO H Q, ZHANG G X, YAN B, et al. Substantially enhanced properties of 2D WS2 by high concentration of erbium doping against tungsten vacancy formation[J]. Research, 2022, 2022: 9840970.
[24] [24] YANG Y, FAN X L, ZHANG H. Effect of strain on the magnetic states of transition-metal atoms doped monolayer WS2[J]. Computational Materials Science, 2016, 117: 354-360.
[26] [26] XIE L Y, ZHANG J M. Electronic structures and magnetic properties of the transition-metal atoms (Mn, Fe, Co and Ni) doped WS2: a first-principles study[J]. Superlattices and Microstructures, 2016, 98: 148-157.
[28] [28] LI H P, LIU S, HUANG S L, et al. Impurity-induced ferromagnetism and metallicity of WS2 monolayer[J]. Ceramics International, 2016, 42(2): 2364-2369.
[31] [31] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): 864-871.
[32] [32] KRESSE G, FURTHMLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.
[33] [33] BLCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979.
[34] [34] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[35] [35] ZHU Y Y, ZHANG J M. First-principle study of single TM atoms X (X=Fe, Ru or Os) doped monolayer WS2 systems[J]. Superlattices and Microstructures, 2018, 117: 155-162.
[36] [36] POORNIMADEVI C, PREFERENCIAL KALA C, THIRUVADIGAL D J. Tuning the electronic properties of WS2 monolayer by doping transition metals: dft approach[J]. Materials Science in Semiconductor Processing, 2023, 157: 107339.
[37] [37] ZHANG D, CHEN L, YANG M Y, et al. Interfacial characteristics of single layer semiconductor WS2 (SnS2) film and Ag film[J]. Physica B: Condensed Matter, 2023, 667: 415191.
[38] [38] CUI Z, WANG H X, YANG K Q, et al. Highly sensitive and selective defect WS2 chemical sensor for detecting HCHO toxic gases[J]. Sensors, 2024, 24(3): 762.
[40] [40] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138.
[41] [41] GAJDO M, HUMMER K, KRESSE G, et al. Linear optical properties in the projector-augmented wave methodology[J]. Physical Review B, 2006, 73(4): 045112.
[42] [42] JANA D, SUN C L, CHEN L C, et al. Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes[J]. Progress in Materials Science, 2013, 58(5): 565-635.
[43] [43] GUO L, ZHANG S T, FENG W J, et al. A first-principles study on the structural, elastic, electronic, and optical properties of CdRh2O4[J]. Journal of Materials Science, 2014, 49(3): 1205-1214.
[44] [44] GAIKWAD A P, BETTY C A, JAGANNATH, et al. Microflowers of Pd doped ZnS for visible light photocatalytic and photoelectrochemical applications[J]. Materials Science in Semiconductor Processing, 2018, 86: 139-145.
[45] [45] VIKAL S, MEENA S, GAUTAM Y K, et al. Visible-light induced effective and sustainable remediation of nitro organics pollutants using Pd-doped ZnO nanocatalyst[J]. Scientific Reports, 2024, 14: 22430.
Get Citation
Copy Citation Text
ZHANG Ningning, YU Haitao, LIU Yanyan, XUE Dan. Electronic Structure and Optical Property of 4d Transition Metal Doped Monolayer WS2[J]. Journal of Synthetic Crystals, 2025, 54(1): 77
Category:
Received: Oct. 2, 2024
Accepted: Feb. 18, 2025
Published Online: Feb. 18, 2025
The Author Email: Haitao YU (haitaoyu@xust.edu.cn)