Optics and Precision Engineering, Volume. 31, Issue 18, 2687(2023)
Global and local feature fusion image dehazing
[1] [1] 王卫星, 赵恒. 结合改进Retinex及自适应分数阶微分的雾霾公路交通图像增强[J]. 光学 精密工程, 2020, 28(8): 1820-1834.WANGW X, ZHAOH. Haze traffic image enhancement based on improved retinex and adaptive fractional differential[J]. Opt. Precision Eng., 2020, 28(8):1820-1834.(in Chinese)
[2] X JIANG, C L ZHAO, M ZHU et al. Residual spatial and channel attention networks for single image dehazing. Sensors (Basel, Switzerland), 21, 7922(2021).
[3] R T TAN. Visibility in Bad Weather from a Single Image, 1-8(23).
[4] K M HE, J SUN, X O TANG. Single image haze removal using dark channel prior, 1956-1963(20).
[5] C O ANCUTI, C ANCUTI, C HERMANS et al. A Fast Semi-Inverse Approach to Detect and Remove the Haze from a Single Image. Computer Vision-ACCV 2010, 501-514(2011).
[6] Q S ZHU, J M MAI, L SHAO. A fast single image haze removal algorithm using color attenuation prior. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 24, 3522-3533(2015).
[7] B L CAI, X M XU, K JIA et al. DehazeNet: an end-to-end system for single image haze removal. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 25, 5187-5198(2016).
[8] B Y LI, X L PENG, Z Y WANG et al. AOD-Net: all-in-one dehazing network, 4780-4788(22).
[9] [9] 陈清江, 张雪. 混合残差学习与导向滤波算法在图像去雾中的应用[J]. 光学 精密工程, 2019, 27(12):2702-2712. doi: 10.3788/ope.20192712.2702CHENQ J, ZHANGX. Application of hybrid residual learning and guided filtering algorithm in image defogging[J]. Opt. Precision Eng., 2019, 27(12):2702-2712.(in Chinese). doi: 10.3788/ope.20192712.2702
[10] [10] 冯燕茹. 双视觉注意网络的联合图像去雾和透射率估计[J]. 光学 精密工程, 2021, 29(4): 854-863. doi: 10.37188/OPE.20212904.0854FENGY R. Joint transmission map estimation and image dehazing using dual vision attention network[J]. Opt. Precision Eng., 2021, 29(4): 854-863.(in Chinese). doi: 10.37188/OPE.20212904.0854
[11] [11] 杨燕, 梁小珍, 张金龙. 分离特征和协同网络下的端到端图像去雾[J]. 光学 精密工程, 2021, 29(8):1931-1941. doi: 10.37188/OPE.2021.0003YANGY, LIANGX Z, ZHANGJ L. End-to-end image dehazing under separated features and collaborative network[J]. Opt. Precision Eng., 2021, 29(8):1931-1941.(in Chinese). doi: 10.37188/OPE.2021.0003
[12] A VASWANI, N SHAZEER, N PARMAR et al. Attention is all you need, 6000-6010(9).
[13] J Y LIANG, J Z CAO, G L SUN et al. SwinIR: image restoration using swin transformer, 1833-1844(11).
[14] H T CHEN, Y H WANG, T Y GUO et al. Pre-trained image processing transformer, 12294-12305(20).
[15] Q QIN, J K YAN, Q WANG et al. ETDNet: an efficient transformer deraining model. IEEE Access, 9, 119881-119893(2021).
[17] H B ZHANG, K SAKURAI. Conditional generative adversarial network-based image denoising for defending against adversarial attack. IEEE Access, 9, 169031-169043(2021).
[18] P WANG. Image denoising using deep cgan with bi-skip connections, 724-729(16).
[19] H ZHANG, V SINDAGI, V M PATEL. Image de-raining using a conditional generative adversarial network. IEEE Transactions on Circuits and Systems for Video Technology, 30, 3943-3956(2020).
[20] R T LI, L F CHEONG, R T TAN. Heavy rain image restoration: integrating physics model and conditional adversarial learning, 1633-1642(15).
[21] J PARK, D K HAN. Fusion of heterogeneous adversarial networks for single image dehazing. IEEE Transactions on Image Processing, 29, 4721-4732(2020).
[22] R D LI, J S PAN, Z C LI et al. Single image dehazing via conditional generative adversarial network, 8202-8211(18).
[23] P ISOLA, J Y ZHU, T H ZHOU et al. Image-to-image translation with conditional adversarial networks, 5967-5976(21).
[24] O RONNEBERGER, P FISCHER, T BROX.
[25] W Z SHI, J CABALLERO, F HUSZÁR et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, 1874-1883(27).
[27] X JIANG, L LU, M ZHU et al. Haze relevant feature attention network for single image dehazing. IEEE Access, 9, 106476-106488(2021).
[28] D ENGIN, A GENC, H K EKENEL. Cycle-dehaze: enhanced cyclegan for single image dehazing, 938-9388(18).
[29] Y Y QU, Y Z CHEN, J Y HUANG et al. Enhanced pix2pix dehazing network, 8152-8160(15).
[30] X QIN, Z L WANG, Y C BAI et al. FFA-net: feature fusion attention network for single image dehazing. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 11908-11915(2020).
[31] H ULLAH, K MUHAMMAD, M IRFAN et al. Light-DehazeNet: a novel lightweight CNN architecture for single image dehazing. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 30, 8968-8982(2021).
[32] B Y LI, W Q REN, D P FU et al. Benchmarking single-image dehazing and beyond. IEEE Transactions on Image Processing, 28, 492-505(2019).
[33] C ANCUTI, C O ANCUTI, R TIMOFTE et al. NTIRE 2018 challenge on image dehazing: methods and results, 1004-100410(18).
[34] C ANCUTI, C ANCUTI, R TIMOFTE et al. NTIRE 2019 image dehazing challenge report, 2241-2253(2019).
[35] C O ANCUTI, C ANCUTI, F A VASLUIANU et al. NTIRE 2020 challenge on nonhomogeneous dehazing, 2029-2044(14).
[36] C O ANCUTI, C ANCUTI, R TIMOFTE et al. O-HAZE: a dehazing benchmark with real hazy and haze-free outdoor images, 867-8678(18).
[37] C O ANCUTI, C ANCUTI, M SBERT et al. Dense-Haze: a benchmark for image dehazing with dense-haze and haze-free images, 1014-1018(22).
[38] C O ANCUTI, C ANCUTI, R TIMOFTE. NH-HAZE: an image dehazing benchmark with non-homogeneous hazy and haze-free images, 1798-1805(14).
Get Citation
Copy Citation Text
Xin JIANG, Haitao NIE, Ming ZHU. Global and local feature fusion image dehazing[J]. Optics and Precision Engineering, 2023, 31(18): 2687
Category: Information Sciences
Received: Feb. 13, 2022
Accepted: --
Published Online: Oct. 12, 2023
The Author Email: JIANG Xin (xinjiang@zju.edu.cn)