Optics and Precision Engineering, Volume. 31, Issue 18, 2687(2023)
Global and local feature fusion image dehazing
[1] [1] 王卫星, 赵恒. 结合改进Retinex及自适应分数阶微分的雾霾公路交通图像增强[J]. 光学 精密工程, 2020, 28(8): 1820-1834.WANGW X, ZHAOH. Haze traffic image enhancement based on improved retinex and adaptive fractional differential[J]. Opt. Precision Eng., 2020, 28(8):1820-1834.(in Chinese)
[2] JIANG X, ZHAO C L, ZHU M et al. Residual spatial and channel attention networks for single image dehazing[J]. Sensors (Basel, Switzerland), 21, 7922(2021).
[3] TAN R T. Visibility in Bad Weather from a Single Image[C], 1-8(23).
[4] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[C], 1956-1963(20).
[5] ANCUTI C O, ANCUTI C, HERMANS C et al. A Fast Semi-Inverse Approach to Detect and Remove the Haze from a Single Image[M]. Computer Vision-ACCV 2010, 501-514(2011).
[6] ZHU Q S, MAI J M, SHAO L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 24, 3522-3533(2015).
[7] CAI B L, XU X M, JIA K et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 25, 5187-5198(2016).
[8] LI B Y, PENG X L, WANG Z Y et al. AOD-Net: all-in-one dehazing network[C], 4780-4788(22).
[9] [9] 陈清江, 张雪. 混合残差学习与导向滤波算法在图像去雾中的应用[J]. 光学 精密工程, 2019, 27(12):2702-2712. doi: 10.3788/ope.20192712.2702CHENQ J, ZHANGX. Application of hybrid residual learning and guided filtering algorithm in image defogging[J]. Opt. Precision Eng., 2019, 27(12):2702-2712.(in Chinese). doi: 10.3788/ope.20192712.2702
[10] [10] 冯燕茹. 双视觉注意网络的联合图像去雾和透射率估计[J]. 光学 精密工程, 2021, 29(4): 854-863. doi: 10.37188/OPE.20212904.0854FENGY R. Joint transmission map estimation and image dehazing using dual vision attention network[J]. Opt. Precision Eng., 2021, 29(4): 854-863.(in Chinese). doi: 10.37188/OPE.20212904.0854
[11] [11] 杨燕, 梁小珍, 张金龙. 分离特征和协同网络下的端到端图像去雾[J]. 光学 精密工程, 2021, 29(8):1931-1941. doi: 10.37188/OPE.2021.0003YANGY, LIANGX Z, ZHANGJ L. End-to-end image dehazing under separated features and collaborative network[J]. Opt. Precision Eng., 2021, 29(8):1931-1941.(in Chinese). doi: 10.37188/OPE.2021.0003
[12] VASWANI A, SHAZEER N, PARMAR N et al. Attention is all you need[C], 6000-6010(9).
[13] LIANG J Y, CAO J Z, SUN G L et al. SwinIR: image restoration using swin transformer[C], 1833-1844(11).
[14] CHEN H T, WANG Y H, GUO T Y et al. Pre-trained image processing transformer[C], 12294-12305(20).
[15] QIN Q, YAN J K, WANG Q et al. ETDNet: an efficient transformer deraining model[J]. IEEE Access, 9, 119881-119893(2021).
[17] ZHANG H B, SAKURAI K. Conditional generative adversarial network-based image denoising for defending against adversarial attack[J]. IEEE Access, 9, 169031-169043(2021).
[18] WANG P. Image denoising using deep cgan with bi-skip connections[C], 724-729(16).
[19] ZHANG H, SINDAGI V, PATEL V M. Image de-raining using a conditional generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 30, 3943-3956(2020).
[20] LI R T, CHEONG L F, TAN R T. Heavy rain image restoration: integrating physics model and conditional adversarial learning[C], 1633-1642(15).
[21] PARK J, HAN D K. Fusion of heterogeneous adversarial networks for single image dehazing[J]. IEEE Transactions on Image Processing, 29, 4721-4732(2020).
[22] LI R D, PAN J S, LI Z C et al. Single image dehazing via conditional generative adversarial network[C], 8202-8211(18).
[23] ISOLA P, ZHU J Y, ZHOU T H et al. Image-to-image translation with conditional adversarial networks[C], 5967-5976(21).
[24] RONNEBERGER O, FISCHER P, BROX T.
[25] SHI W Z, CABALLERO J, HUSZÁR F et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C], 1874-1883(27).
[27] JIANG X, LU L, ZHU M et al. Haze relevant feature attention network for single image dehazing[J]. IEEE Access, 9, 106476-106488(2021).
[28] ENGIN D, GENC A, EKENEL H K. Cycle-dehaze: enhanced cyclegan for single image dehazing[C], 938-9388(18).
[29] QU Y Y, CHEN Y Z, HUANG J Y et al. Enhanced pix2pix dehazing network[C], 8152-8160(15).
[30] QIN X, WANG Z L, BAI Y C et al. FFA-net: feature fusion attention network for single image dehazing[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 11908-11915(2020).
[31] ULLAH H, MUHAMMAD K, IRFAN M et al. Light-DehazeNet: a novel lightweight CNN architecture for single image dehazing[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 30, 8968-8982(2021).
[32] LI B Y, REN W Q, FU D P et al. Benchmarking single-image dehazing and beyond[J]. IEEE Transactions on Image Processing, 28, 492-505(2019).
[33] ANCUTI C, ANCUTI C O, TIMOFTE R et al. NTIRE 2018 challenge on image dehazing: methods and results[C], 1004-100410(18).
[34] ANCUTI C, ANCUTI C, TIMOFTE R et al. NTIRE 2019 image dehazing challenge report[C], 2241-2253(2019).
[35] ANCUTI C O, ANCUTI C, VASLUIANU F A et al. NTIRE 2020 challenge on nonhomogeneous dehazing[C], 2029-2044(14).
[36] ANCUTI C O, ANCUTI C, TIMOFTE R et al. O-HAZE: a dehazing benchmark with real hazy and haze-free outdoor images[C], 867-8678(18).
[37] ANCUTI C O, ANCUTI C, SBERT M et al. Dense-Haze: a benchmark for image dehazing with dense-haze and haze-free images[C], 1014-1018(22).
[38] ANCUTI C O, ANCUTI C, TIMOFTE R. NH-HAZE: an image dehazing benchmark with non-homogeneous hazy and haze-free images[C], 1798-1805(14).
Get Citation
Copy Citation Text
Xin JIANG, Haitao NIE, Ming ZHU. Global and local feature fusion image dehazing[J]. Optics and Precision Engineering, 2023, 31(18): 2687
Category: Information Sciences
Received: Feb. 13, 2022
Accepted: --
Published Online: Oct. 12, 2023
The Author Email: Xin JIANG (xinjiang@zju.edu.cn)