Optics and Precision Engineering, Volume. 31, Issue 10, 1509(2023)
Full reference image quality assessment based on color appearance-based phase consistency
[1] [1] 1卢鹏, 刘楷贇, 邹国良, 等. 基于多特征融合和卷积神经网络的无参考图像质量评价[J]. 液晶与显示, 2022, 37(1): 66-76. doi: 10.37188/CJLCD.2021-0175LUP, LIUK Y, ZOUG L, et al. No reference image quality assessment based on fusion of multiple features and convolutional neural network[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(1): 66-76. (in Chinese). doi: 10.37188/CJLCD.2021-0175
[2] [2] 2高敏娟, 党宏社, 魏立力, 等. 全参考图像质量评价回顾与展望[J]. 电子学报, 2021, 49(11): 2261-2272. doi: 10.12263/DZXB.20200780GAOM J, DANGH SH, WEIL L, et al. Review and prospect of full reference image quality assessment[J]. Acta Electronica Sinica, 2021, 49(11): 2261-2272. (in Chinese). doi: 10.12263/DZXB.20200780
[3] [3] 3刘国军, 高丽霞, 陈丽奇. 广义平均的全参考型图像质量评价池化策略[J]. 光学 精密工程, 2017, 25(3): 742-748. doi: 10.3788/ope.20172503.0742LIUG J, GAOL X, CHENL Q. Pooling strategy for full-reference IQA via general means[J]. Opt. Precision Eng., 2017, 25(3): 742-748. (in Chinese). doi: 10.3788/ope.20172503.0742
[4] [4] 4韩昊男, 钱锋, 吕建威, 等. 图像去雾方法质量评价[J]. 光学 精密工程, 2022, 30(6): 721-733. doi: 10.37188/OPE.20223006.0721HANH N, QIANF, LVJ W, et al. Image dehazing method quality assessment[J]. Opt. Precision Eng., 2022, 30(6): 721-733. (in Chinese). doi: 10.37188/OPE.20223006.0721
[5] [5] 5宋蓓蓓, 马穗娜, 何帆, 等. Res2-Unet深度学习网络的RGB-高光谱图像重建[J]. 光学 精密工程, 2022, 30(13): 1606-1619. doi: 10.37188/OPE.2021.0433SONGB B, MAS N, HEF, et al. Hyperspectral reconstruction from RGB images based on Res2-Unet deep learning network[J]. Opt. Precision Eng., 2022, 30(13): 1606-1619. (in Chinese). doi: 10.37188/OPE.2021.0433
[6] [6] 6丰明坤, 孙丽慧, 葛丁飞, 等. 深度视觉频谱残余融合的图像质量评价[J]. 光电子·激光, 2021, 32(10): 1055-1064.FENGM K, SUNL H, GED F, et al. Image quality evaluation of spectrum residual fusion in depth vision[J]. Journal of Optoelectronics·Laser, 2021, 32(10): 1055-1064.(in Chinese)
[7] Z WANG, A C BOVIK, H R SHEIKH et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600-612(2004).
[8] M PAUL, S C BEHR, C WEISS et al. Spatio-temporal and-spectral feature maps in photoplethysmography imaging and infrared thermography. BioMedical Engineering OnLine, 20, 1-54(2021).
[9] Z WANG, E P SIMONCELLI, A C BOVIK. Multiscale Structural Similarity for Image Quality Assessment. 12, 1398-1402(9).
[10] C F LI, A C BOVIK. Three-Component Weighted Structural Similarity Index, 7242, 252-260(2009).
[11] H Z JIA, L ZHANG, T H WANG. Contrast and visual saliency similarity-induced index for assessing image quality. IEEE Access, 6, 65885-65893(2018).
[12] A M LIU, W S LIN, M NARWARIA. Image quality assessment based on gradient similarity. IEEE Transactions on Image Processing, 21, 1500-1512(2012).
[13] H R SHEIKH, A C BOVIK, G DE VECIANA. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on Image Processing, 14, 2117-2128(2005).
[14] [14] 14朱惠娟, 宗平, 丛玉华. 基于权重池的多尺度图像质量评估方法[J]. 计算机工程与应用, 2021, 57(3): 215-221. doi: 10.3778/j.issn.1002-8331.2008-0365ZHUH J, ZONGP, CONGY H. Multi-scale image quality assessment method based on weight pool[J]. Computer Engineering and Applications, 2021, 57(3): 215-221. (in Chinese). doi: 10.3778/j.issn.1002-8331.2008-0365
[15] H MOKAYED, P SHIVAKUMARA, H H WOON et al. A new DCT-PCM method for license plate number detection in drone images. Pattern Recognition Letters, 148, 45-53(2021).
[16] L ZHANG, L ZHANG, X Q MOU et al. FSIM: a feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 20, 2378-2386(2011).
[17] [17] 17张帆, 张偌雅, 李珍珍. 基于对称相位一致性的图像质量评价方法[J]. 激光与光电子学进展, 2017, 54(10): 101003. doi: 10.3788/lop54.101003ZHANGF, ZHANGR Y, LIZH ZH. Image quality evaluation method based on symmetrical phase consistency[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101003. (in Chinese). doi: 10.3788/lop54.101003
[18] [18] 18夏雨蒙, 王永芳, 王闯. 相位一致性指导的全参考全景图像质量评价[J]. 中国图象图形学报, 2021, 26(7): 1625-1636. doi: 10.11834/jig.200546XIAY M, WANGY F, WANGCH. Phase consistency guided full-reference panoramic image quality assessment algorithm[J]. Journal of Image and Graphics, 2021, 26(7): 1625-1636. (in Chinese). doi: 10.11834/jig.200546
[19] L LIU, M GAO, Y ZHANG et al. Application of machine learning in intelligent encryption for digital information of real-time image text under big data. EURASIP Journal on Wireless Communications and Networking, 1-16(2022).
[20] [20] 20史晨阳, 林燕丹. 基于图像色貌和梯度特征的图像质量客观评价[J]. 物理学报, 2020, 69(22): 228701. doi: 10.7498/aps.69.20200753SHICH Y, LINY D. Objective image quality assessment based on image color appearance and gradient features[J]. Acta Physica Sinica, 2020, 69(22): 228701. (in Chinese). doi: 10.7498/aps.69.20200753
[21] C Y SHI, Y D LIN. Full reference image quality assessment based on visual salience with color appearance and gradient similarity. IEEE Access, 8, 97310-97320(2020).
[22] R S BERNS. Extending CIELAB: vividness, depth, and clarity. Color Research & Application, 39, 322-330(2014).
[23] I T AHMED, C S DER, B T HAMMAD et al. Contrast-distorted image quality assessment based on curvelet domain features. International Journal of Electrical and Computer Engineering (IJECE), 11, 2595(2021).
[24] J CHENG, B K REN, L J ZHAO et al. Analysis of phase response of fiber Fabry-Pérot cavity microphones. The Journal of the Acoustical Society of America, 149, 1012-1020(2021).
[25] Y MEGAHED, A SHAKER, W Y YAN. A phase-congruency-based scene abstraction approach for 2D-3D registration of aerial optical and LiDAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 964-981(2020).
[26] X YANG, B JU, M KERSEMANS. Ultrasonic tomographic reconstruction of local fiber orientation in multi-layer composites using Gabor filter-based information diagram method. NDT & E International, 124, 102545(2021).
[27] N PONOMARENKO, V LUKIN, A ZELENSKY et al. TID2008-a database for evaluation of full-reference visual quality assessment metrics. Advances of modern radioelectronics, 10, 30-45(2009).
[28] A BAKSHI, S ROY, A MALLICK et al. A discrete magno-parvo additive model in early vision for explaining brightness perception in varying contrastive contexts. Biological Cybernetics, 116, 5-21(2022).
[29] E LARSON, D CHANDLER. Categorical image quality (CSIQ) database. http://vision.okstate.edu/csiq
[31] N PONOMARENKO, L N JIN, O IEREMEIEV et al. Image database TID2013: Peculiarities, results and perspectives. Signal Processing: Image Communication, 30, 57-77(2015).
[32] Z F XIANG, D F HU, H C XIONG et al. Benefit of chemotherapy in stage III nasopharyngeal carcinoma: analysis of the surveillance, epidemiology, and end results database. Oral Oncology, 117, 105284(2021).
[33] E C LARSON, D M CHANDLER. Most apparent distortion: full-reference image quality assessment and the role of strategy. Journal of Electronic Imaging, 19(2010).
[34] W F XUE, L ZHANG, X Q MOU et al. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 23, 684-695(2014).
[35] L ZHANG, Y SHEN, H Y LI. VSI: a visual saliency-induced index for perceptual image quality assessment. IEEE Transactions on Image Processing, 23, 4270-4281(2014).
[36] G Y YANG, D S LI, F LU et al. RVSIM: a feature similarity method for full-reference image quality assessment. EURASIP Journal on Image and Video Processing, 1-15(2018).
Get Citation
Copy Citation Text
Benchi JIANG, Shilei BIAN, Chenyang SHI, Lulu WU. Full reference image quality assessment based on color appearance-based phase consistency[J]. Optics and Precision Engineering, 2023, 31(10): 1509
Category: Information Sciences
Received: May. 14, 2022
Accepted: --
Published Online: Jul. 4, 2023
The Author Email: