Journal of the Chinese Ceramic Society, Volume. 52, Issue 8, 2486(2024)
Regulation of Luminescence Properties of Cesium Lead Bromide Quantum Dot Glasses by Tuning Content Ratio of Ca/Mg
[1] [1] HUANG L, GAO Q G, SUN L D, et al. Composition-graded cesium lead halide perovskite nanowires with tunable dual-color lasing performance[J]. Adv Mater, 2018, 30(27): e1800596.
[2] [2] SONG S, LV Y C, CAO B Q, et al. Surface modification strategy synthesized CsPbX3 perovskite quantum dots with excellent stability and optical properties in water[J]. Adv Funct Mater, 2023, 33(21):2300493.
[3] [3] CHEN H J, PINA J M, HOU Y, et al. Synthesis, applications, and prospects of quantum-dot-in-perovskite solids[J]. Adv Energy Mater,2022, 12(4): 2100774.
[4] [4] FU W F, RICCIARDULLI A G, AKKERMAN Q A, et al. Stability of perovskite materials and devices[J]. Mater Today, 2022, 58:275–296.
[6] [6] SHAO G Z, LIU S N, DING L, et al. KxCs1–xPbBr3 NCs glasses possessing super optical properties and stability for white light emitting diodes[J]. Chem Eng J, 2019, 375: 122031.
[7] [7] SHEN C Y, ZHAO Y, YUAN L, et al. Transition metal ion doping perovskite nanocrystals for high luminescence quantum yield[J]. Chem Eng J, 2020, 382: 122868.
[8] [8] CHEN D Q, LIU Y, YANG C B, et al. Promoting photoluminescence quantum yields of glass-stabilized CsPbX3 (X = Cl, Br, I) perovskite quantum dots through fluorine doping[J]. Nanoscale, 2019, 11(37):17216–17221.
[9] [9] ZHANG K, ZHOU D C, QIU J B, et al. Effect of topological structure on photoluminescence of CsPbBr3 quantum dot doped glasses[J]. J Alloys Compd, 2020, 826: 154111.
[10] [10] FAN Y H, LI J Q, LU Z T, et al. Modulating the local structure of glass to promote in situ precipitation of perovskite CsPbBr3 quantum dots by introducing a network modifier[J]. J Mater Chem C, 2022,10(22): 8634–8641.
[11] [11] PANG X L, ZHANG H R, XIE L Q, et al. Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays[J]. J Mater Chem C, 2019, 7(42): 13139–13148.
[12] [12] PANG X L, SI S C, XIE L Q, et al. Regulating the morphology and luminescence properties of CsPbBr3 perovskite quantum dots through the rigidity of glass network structure[J]. J Mater Chem C, 2020, 8(48):17374–17382.
[13] [13] SI S C, YU J B, LOU S Q, et al. Engineering the crystallization behavior of CsPbBr3 quantum dots in borosilicate glass through modulating the glass network modifiers for wide-color-gamut displays[J]. J Eur Ceram Soc, 2022, 42(8): 3586–3594.
[14] [14] YANG M T, WANG Q, TONG Y, et al. CsPbBr3 nanocrystals glass with finely adjustable wavelength and color coordinate by MgO modulation for wide-color-gamut backlight displays[J]. Appl Surf Sci,2022, 604: 154529.
[15] [15] CHEN Y Y, MEI E R, LIANG X J, et al. CaO modulated dual-phase CsPb2Br5/CsPbBr3 perovskite nanocrystal glasses with enhanced stability for backlit display[J]. J Lumin, 2023, 253: 119456.
[16] [16] DU Z, ZHANG X H, YUE Y, et al. Effect of mgo on structure and dielectric properties of CaO-Al2O3-B2O3-SiO2 glasses[J]. Surf Rev Lett,2012, 19: 1250063.
[17] [17] GAO X L, ZHANG Q, YU J B, et al. Effect of replacement of Al2O3 by Y2O3 on the structure and properties of alkali-free boroaluminosilicate glass[J]. J Non Cryst Solids, 2018, 481: 98–102.
[18] [18] KAKY K M, LAKSHMINARAYANA G, BAKI S O, et al. Structural,thermal, and optical analysis of zinc boro-aluminosilicate glasses containing different alkali and alkaline modifier ions[J]. J Non Cryst Solids, 2017, 456: 55–63.
[19] [19] DANTAS N O, AYTA W E F, SILVA A C A, et al. Effect of Fe2O3 concentration on the structure of the SiO2-Na2O-Al2O3-B2O3 glass system[J]. Spectrochim Acta A Mol BiomolSpectrosc, 2011, 81(1):140–143.
[20] [20] LAI Y M, ZENG Y M, TANG X L, et al. Structural investigation of calcium borosilicate glasses with varying Si/Ca ratios by infrared and Raman spectroscopy[J]. RSC Adv, 2016, 6(96): 93722–93728.
[21] [21] SHAN Z T, LI C J, TAO H Z. Mixed alkaline-earth effect on the mechanical and rheological properties of Ca–Mg silicate glasses[J]. J Am Ceram Soc, 2017, 100(10): 4570–4580.
[22] [22] KJELDSEN J, SMEDSKJAER M M, MAURO J C, et al. Mixed alkaline earth effect in sodium aluminosilicate glasses[J]. J Non Cryst Solids, 2013, 369: 61–68.
[24] [24] XU F, KONG X B, WANG W Z, et al. Quantum size effect and surface defect passivation in size-controlled CsPbBr3 quantum dots[J].J Alloys Compd, 2020, 831: 154834.
[25] [25] LIU J L, ZOU Q, ZHANG Z, et al. Research on mixed alkaline-earth effect in non-alkali glass substrates for TFT-LCDs[J]. J Non Cryst Solids, 2022, 579: 121372.
[26] [26] WANG D Z, QIU J B, ZHOU D C, et al. Lithium doping induced self-crystallization of CsPbBr3 nanocrystal glass with improved quantum yield and stability[J]. Chem Eng J, 2021, 421: 127777.
Get Citation
Copy Citation Text
FAN Yanhong, LU Zhentong, LEI Bingfu, ZHANG Xuejie. Regulation of Luminescence Properties of Cesium Lead Bromide Quantum Dot Glasses by Tuning Content Ratio of Ca/Mg[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2486
Category:
Received: Nov. 29, 2023
Accepted: --
Published Online: Dec. 4, 2024
The Author Email: Bingfu LEI (tleibf@scau.edu.cn)