Spectroscopy and Spectral Analysis, Volume. 31, Issue 2, 508(2011)
Integration of Soft and Hard Classifications Using Linear Spectral Mixture Model and Support Vector Machines
[2] [2] Das S K, Singh R. IEEE Transactions on Geoscience and Remote Sensing Letters, 2009, 6 (3): 453.
[3] [3] Brandt Tso, Mather Paul M. Classification Methods for Remotely Sensed Data (Second Edition). London: CRC Press, 2009. 54.
[8] [8] Ichoku C, Karnieli A. Remote Sensing Reviews, 1996, 13: 161.
[9] [9] Shanmugam P, Ahn Y, Sanjeevi S. Ecological Modelling, 2006. 194: 379.
[11] [11] Wu T. Journal of Machine Learning Research, 2004, 5: 975.
[14] [14] Verhoeye J, Wulf R De. Remote Sensing of Environment, 2002, 79(1): 96.
[15] [15] Chang C I, Plaza A. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 63.
[16] [16] Song Conghe, Dickinson Matthew B, Su Lihong. Remote Sensing of Environment, 2010, 114(5): 1099.
[17] [17] Heinl M, Walde J, Tappeiner G. International Journal of Applied Earth Observation and Geoinformation, 2009, 11: 423.
Get Citation
Copy Citation Text
HU Tan-gao, PAN Yao-zhong, ZHANG Jin-shui, LI Ling-ling, LI Le. Integration of Soft and Hard Classifications Using Linear Spectral Mixture Model and Support Vector Machines[J]. Spectroscopy and Spectral Analysis, 2011, 31(2): 508
Received: May. 17, 2010
Accepted: --
Published Online: Mar. 24, 2011
The Author Email: HU Tan-gao (hutangao@163.com)
CSTR:32186.14.