Journal of the Chinese Ceramic Society, Volume. 52, Issue 4, 1310(2024)
Energy Storage Performance of La3+ Doped Strontium Barium Niobate Glass Ceramics
[1] [1] ZHENG S, XIE J H, ZHAO X C, et al. Methyl methacrylate-co-glycidyl methacrylate-based dielectric films with high breakdown strength and discharge energy density tailored by PVDF[J]. Langmuir, 2023, 39(10): 3710-3719.
[2] [2] GENG X L, WANG Y, SHANG F, et al. Crystallization temperature dependence of phase evolution and energy storage feature of KSr2Nb5O15 based glass ceramics[J]. J Mater Sci Mater Electron, 2023, 34(16): 1264.
[3] [3] FU T T, QIAN J, XIE S F, et al. Greatly enhanced energy storage density of alkali-free glass-ceramics after dual optimizations by thickness and crystallization temperature[J]. Ceram Int, 2023, 49(13): 21443-21448.
[4] [4] ZHAO M J, XIA W M, LIANG Y N, et al. Ba(Zr0.3Ti0.7)O3 doping to enhance the dielectric and energy discharging performances of a 0.65Bi0.5Na0.5TiO3-0.35Sr0.7Bi0.2TiO3 lead-free ceramic[J]. J Mater Sci Mater Electron, 2022, 33(27): 21702-21712.
[5] [5] ZHANG B, CHEN X M, WU W W, et al. Outstanding discharge energy density and efficiency of the bilayer nanocomposite films with BaTiO3-dispersed PVDF polymer and polyetherimide layer[J]. Chem Eng J, 2022, 446: 136926.
[6] [6] ZENG M S, LIU J S, LI H Q, et al. Lead-free (Sr0.7Ca0.3)1?1.5xBixTiO3 ceramics with temperature stable energy storage density and discharge efficiency for pulsed power technology[J]. J Alloys Compd, 2022, 907: 164336.
[7] [7] XIE S F, LIU C S, BAI H R, et al. Crystallization-temperature controlled alkali-free niobate glass-ceramics with high energy storage density and actual discharge energy density[J]. J Alloys Compd, 2022, 910: 164923.
[8] [8] SUN L, SHI Z C, LIANG L, et al. Concurrently achieving high discharged energy density and efficiency in composites by introducing ultralow loadings of core-shell structured graphene@TiO2 nanoboxes[J]. ACS Appl Mater Interfaces, 2022, 14(25): 29292-29301.
[9] [9] QIN Y Y, SHANG F, CHEN G H, et al. Achieving ultrahigh discharge energy and power density in niobate-based glass ceramics via A-site substitution modulation during crystallization[J]. J Mater Chem A, 2022, 10(21): 11535-11541.
[10] [10] QIN Y Y, LUO F, GENG X L, et al. Influences of crystallization temperature on the structure, dielectric, and energy storage characteristics of KBaSrNb5O15-based glass-ceramics[J]. J Am Ceram Soc, 2022, 105(10): 6311-6319.
[11] [11] QIN L, HUO W J, LI Z L, et al. Study on energy distribution of discharge plasma and its effect on crater formation in EDM[J]. Int J Adv Manuf Technol, 2022, 121(7): 5563-5585.
[12] [12] MA J C, ZHANG Y B, ZHANG Y, et al. Constructing nanocomposites with robust covalent connection between nanoparticles and polymer for high discharged energy density and excellent tensile properties[J]. J Energy Chem, 2022, 68: 195-205.
[13] [13] YANG K, LIU J R, SHEN B, et al. Large improvement on energy storage and charge-discharge properties of Gd2O3-doped BaO-K2O-Nb2O5-SiO2 glass-ceramic dielectrics[J]. Mater Sci Eng B, 2017, 223: 178-184.
[14] [14] TIAN Y M, ZHOU Y, DU J. Preparation and dielectric characterization of lead-free niobate glass-ceramic composites added with Lu2O3[J]. J Am Ceram Soc, 2014, 97(8): 2353-2356.
[15] [15] JIANG Y, LUO Z M, HUANG Y, et al. Simultaneously increased discharged energy density and efficiency in bilayer-structured nanocomposites with AgNbO3 lead-free antiferroelectric nanofillers[J]. J Mater Chem A, 2022, 10(36): 18950-18961.
[16] [16] PRATEEK, BHUNIA R, SARKAR A, et al. Unveiling the role of graphene oxide as an interface interlocking ingredient in polyvinylidene fluoride-based multilayered thin-film capacitors for high energy density and ultrafast discharge applications[J]. Energy Tech, 2021, 9(4): 2000905.
[17] [17] DONG G H, MAO Y Q, YANG G M, et al. High-strength poly(ethylene oxide) composite electrolyte reinforced with glass fiber and ceramic electrolyte simultaneously for structural energy storage[J]. ACS Appl Energy Mater, 2021, 4(4): 4038-4049.
[18] [18] ZHENG J, CHEN G H, YUAN C L, et al. Dielectric characterization and energy-storage performance of lead-free niobate glass-ceramics added with La2O3[J]. Ceram Int, 2016, 42(1): 1827-1832.
[19] [19] CHEN J C. La doping effect on the dielectric property of Barium strontium titanate glass-ceramics[J]. J Mater Sci Technol, 2014, 30(3): 295-298.
[20] [20] ZHOU Y, ZHANG Q M, LUO J, et al. Crystallization and dielectric properties of lead-free glass-ceramic composites with Gd2O3 addition[J]. Rare Met, 2012, 31(3): 281-284.
[21] [21] DESHPANDE S B, POTDAR H S, GODBOLE P D, et al. Preparation and ferroelectric properties of SBN: 50 ceramics[J]. J Am Ceram Soc, 1992, 75(9): 2581-2585.
[22] [22] YANG K, LIU J R, SHEN B, et al. Effects of TiO2 addition on dielectric and energy storage properties of BaO-K2O-Nb2O5-SiO2 glass ceramics[J]. Ceram Int, 2018, 44(6): 6181-6185.
[23] [23] OUYANG Y X, DENG Y M, LI D D, et al. Electrical and thermal properties of surface passivated carbon nanotube/polyvinylidene fluoride composites[J]. IET Nanodielectr, 2018, 1(3): 122-126.
[24] [24] LIANG W, NIU X, JIAN X D, et al. The impact of oxygen partial pressure during sintering on the electrocaloric effect of Ba0.7Sr0.3TiO3 ceramics[J]. J Mater Chem C, 2022, 10(44): 16847-16856.
[25] [25] SU Z, YAO M W, CHEN J W, et al. Effects of annealing temperature, ambient humidity and temperature on dielectric properties of sol-gel-derived amorphous alumina thin film[J]. J Mater Sci Mater Electron, 2017, 28(16): 12356-12362.
[26] [26] MU Wenfang, DU Huiling, SHI Xiang, et al. J Chin Ceram Soc, 2011, 39(12): 1941-1946.
[27] [27] ZHU Mankang, DUAN Chenghui, LEI Na, et al. J Chin Ceram Soc, 2012, 40(10): 1403-1408.
[28] [28] KIM P, DOSS N M, TILLOTSON J P, et al. High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer[J]. ACS Nano, 2009, 3(9): 2581-2592.
[29] [29] YU K, WANG H, ZHOU Y C, et al. Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications[J]. J Appl Phys, 2013, 113(3): 34105-34105-6.
[30] [30] WANG Lu, KONG Wenjie, LUO Hang, et al. J Inorg Mater, 2018, 33(10): 1059-1064.
[31] [31] LIU J H, WANG H T, SHEN B, et al. Significantly enhanced energy-storage density in the strontium barium niobate-based/ titanate-based glass-ceramics[J]. J Am Ceram Soc, 2017, 100(2): 506-510.
Get Citation
Copy Citation Text
WANG Jiao, WANG Qing, WANG Yuan, SUN Xing, HAO Haoshan, LIU Shaohui. Energy Storage Performance of La3+ Doped Strontium Barium Niobate Glass Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1310
Category:
Received: Aug. 31, 2023
Accepted: --
Published Online: Aug. 19, 2024
The Author Email: Shaohui LIU (qqliushaohui@163.com)