Acta Optica Sinica, Volume. 43, Issue 16, 1623013(2023)

Advancements in Micro-Nano Optical Device Based on Two-Photon Direct Writing

Minfei He1, Dazhao Zhu2, Hongqing Wang2, Zhenyu Yang1, Fanqi Shen1, Rengmao Wu1, Cuifang Kuang1,2, and Xu Liu1,2、*
Author Affiliations
  • 1State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • 2Zhejiang Laboratory, Hangzhou 311121, Zhejiang, China
  • show less
    References(92)

    [1] Meyrueis P, Sakoda K, van de Voorde M H[M]. Micro- and nanophotonic technologies(2017).

    [2] Wang Y, Yang J, Wang Z W et al. The development and progression of micro-nano optics[J]. Frontiers in Chemistry, 10, 916553(2022).

    [3] Cheben P, Halir R, Schmid J H et al. Subwavelength integrated photonics[J]. Nature, 560, 565-572(2018).

    [4] Anscombe N. Direct laser writing[J]. Nature Photonics, 4, 22-23(2010).

    [5] Lu C, Lipson R H. Interference lithography: a powerful tool for fabricating periodic structures[J]. Laser & Photonics Reviews, 4, 568-580(2010).

    [6] Ito T, Okazaki S. Pushing the limits of lithography[J]. Nature, 406, 1027-1031(2000).

    [7] Guo L J. Nanoimprint lithography: methods and material requirements[J]. Advanced Materials, 19, 495-513(2007).

    [8] Vieu C, Carcenac F, Pépin A et al. Electron beam lithography: resolution limits and applications[J]. Applied Surface Science, 164, 111-117(2000).

    [9] Melngailis J. Focused ion beam lithography[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 80/81, 1271-1280(1993).

    [10] LaFratta C N, Fourkas J T, Baldacchini T et al. Multiphoton fabrication[J]. Angewandte Chemie International Edition, 46, 6238-6258(2007).

    [11] Fourkas J T. Fundamentals of two-photon fabrication[M]. Baldacchini T. Three-dimensional microfabrication using two-photon polymerization, 57-76(2020).

    [12] Jia B H, Li J F, Gu M. Two-photon polymerization for three-dimensional photonic devices in polymers and nanocomposites[J]. Australian Journal of Chemistry, 60, 484(2007).

    [13] Cao C, Qiu Y W, Guan L L et al. Dip-in photoresist for photoinhibited two-photon lithography to realize high-precision direct laser writing on wafer[J]. ACS Applied Materials & Interfaces, 14, 31332-31342(2022).

    [14] Cao C, Liu J T, Xia X M et al. Click chemistry assisted organic-inorganic hybrid photoresist for ultra-fast two-photon lithography[J]. Additive Manufacturing, 51, 102658(2022).

    [15] Wang H, Zhang W, Ladika D et al. Two-photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications[J]. Advanced Functional Materials, 2214211(2023).

    [16] Varapnickas S, Žukauskas A, Brasselet E et al. 3D microoptics via ultrafast laser writing: miniaturization, integration, and multifunctionalities[M]. Baldacchini T. Three-dimensional microfabrication using two-photon polymerization, 445-474(2020).

    [17] Malinauskas M, Žukauskas A, Belazaras K et al. Laser fabrication of various polymer microoptical components[J]. The European Physical Journal Applied Physics, 58, 20501(2012).

    [18] Asadollahbaik A, Thiele S, Weber K et al. Highly efficient dual-fiber optical trapping with 3D printed diffractive Fresnel lenses[J]. ACS Photonics, 7, 88-97(2020).

    [19] Gissibl T, Thiele S, Herkommer A et al. Two-photon direct laser writing of ultracompact multi-lens objectives[J]. Nature Photonics, 10, 554-560(2016).

    [20] Xiong C, Liao C R, Li Z Y et al. Optical fiber integrated functional micro-/nanostructure induced by two-photon polymerization[J]. Frontiers in Materials, 7, 586496(2020).

    [21] Liu Y J, Wang H, Ho J et al. Structural color three-dimensional printing by shrinking photonic crystals[J]. Nature Communications, 10, 4340(2019).

    [22] Schumann M, Bückmann T, Gruhler N et al. Hybrid 2D-3D optical devices for integrated optics by direct laser writing[J]. Light: Science & Applications, 3, e175(2014).

    [23] Dietrich P I, Blaicher M, Reuter I et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration[J]. Nature Photonics, 12, 241-247(2018).

    [24] He M F, Zhang Z M, Cao C et al. 3D sub-diffraction printing by multicolor photoinhibition lithography: from optics to chemistry[J]. Laser & Photonics Reviews, 16, 2100229(2022).

    [25] Yang S H, Ding C L, Zhu D Z et al. High-speed two-photon lithography based on femtosecond laser[J]. Opto-Electronic Engineering, 50, 220133(2023).

    [26] He M F, Zhang Z M, Cao C et al. Single-color peripheral photoinhibition lithography of nanophotonic structures[J]. PhotoniX, 3, 1-14(2022).

    [27] Zhu D Z, Xu L, Ding C L et al. Direct laser writing breaking diffraction barrier based on two-focus parallel peripheral-photoinhibition lithography[J]. Advanced Photonics, 4, 066002(2022).

    [28] Wang H Q, Wen J S, Yang Z Y et al. High-speed parallel two-photon laser direct writing lithography system[J]. Chinese Journal of Lasers, 49, 2202009(2022).

    [29] Andrzejewska E. Photopolymerization kinetics of multifunctional monomers[J]. Progress in Polymer Science, 26, 605-665(2001).

    [30] Lee K S, Kim R H, Yang D Y et al. Advances in 3D nano/microfabrication using two-photon initiated polymerization[J]. Progress in Polymer Science, 33, 631-681(2008).

    [31] Kiefer P, Hahn V, Nardi M et al. Sensitive photoresists for rapid multiphoton 3D laser micro- and nanoprinting[J]. Advanced Optical Materials, 8, 2000895(2020).

    [32] Malinauskas M, Žukauskas A, Bičkauskaitė G et al. Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses[J]. Optics Express, 18, 10209-10221(2010).

    [33] Baldacchini T. Three-dimensional microfabrication using two-photon polymerization[M]. Baldacchini T(2020).

    [34] O'Shea D C[M]. Diffractive optics: design, fabrication, and test(2004).

    [35] Stankevičius E, Gecys P, Gedvilas M et al. Laser processing by using diffractive optical laser beam shaping technique[J]. Journal of Laser Micro, 6, 37-43(2011).

    [36] Hsu W F, Chen Y W, Su Y H. Implementation of phase-shift patterns using a holographic projection system with phase-only diffractive optical elements[J]. Applied Optics, 50, 3646-3652(2011).

    [37] Tan L Y, Yu J J, Ma J et al. Approach to improve beam quality of inter-satellite optical communication system based on diffractive optical elements[J]. Optics Express, 17, 6311-6319(2009).

    [38] Abrahamsson S, Chen J J, Hajj B et al. Fast multicolor 3D imaging using aberration-corrected multifocus microscopy[J]. Nature Methods, 10, 60-63(2013).

    [39] Sandford O'Neill J, Salter P, Zhao Z M et al. 3D switchable diffractive optical elements fabricated with two-photon polymerization[J]. Advanced Optical Materials, 10, 2102446(2022).

    [40] Yan L Y, Yang D, Gong Q H et al. Rapid fabrication of continuous surface Fresnel microlens array by femtosecond laser focal field engineering[J]. Micromachines, 11, 112(2020).

    [41] Wang H, Liu Y J, Ruan Q F et al. Off-axis holography with uniform illumination via 3D printed diffractive optical elements[J]. Advanced Optical Materials, 7, 1900068(2019).

    [42] Yang Z Y, He M F, Zhou G Z et al. An autofocus method based on improved differential confocal microscopy in two-photon lithography[J]. Photonics, 10, 338(2023).

    [43] Banerji S, Meem M, Majumder A et al. Imaging with flat optics: metalenses or diffractive lenses?[J]. Optica, 6, 805-810(2019).

    [44] Huang K, Qin F, Liu H et al. Planar diffractive lenses: fundamentals, functionalities, and applications[J]. Advanced Materials, 30, 1704556(2018).

    [45] Engelberg J, Levy U. Achromatic flat lens performance limits[J]. Optica, 8, 834-845(2021).

    [46] Senior J M, Jamro M Y[M]. Optical fiber communications: principles and practice(2009).

    [47] Orth A, Ploschner M, Wilson E R et al. Optical fiber bundles: ultra-slim light field imaging probes[J]. Science Advances, 5, eaav1555(2019).

    [48] Lu P, Lalam N, Badar M et al. Distributed optical fiber sensing: review and perspective[J]. Applied Physics Reviews, 6, 041302(2019).

    [49] Xiong Y F, Xu F. Multifunctional integration on optical fiber tips: challenges and opportunities[J]. Advanced Photonics, 2, 064001(2020).

    [50] Yu J A, Bai Z Y, Zhu G X et al. 3D nanoprinted kinoform spiral zone plates on fiber facets for high-efficiency focused vortex beam generation[J]. Optics Express, 28, 38127-38139(2020).

    [51] Hadibrata W, Wei H M, Krishnaswamy S et al. Inverse design and 3D printing of a metalens on an optical fiber tip for direct laser lithography[J]. Nano Letters, 21, 2422-2428(2021).

    [52] Ren H R, Jang J, Li C H et al. An achromatic metafiber for focusing and imaging across the entire telecommunication range[J]. Nature Communications, 13, 4183(2022).

    [53] Plidschun M, Ren H R, Kim J et al. Ultrahigh numerical aperture meta-fibre for flexible optical trapping[J]. Light: Science & Applications, 10, 57(2021).

    [54] Gissibl T, Schmid M, Giessen H. Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing[J]. Optica, 3, 448-451(2016).

    [55] Weber K, Hütt F, Thiele S et al. Single mode fiber based delivery of OAM light by 3D direct laser writing[J]. Optics Express, 25, 19672-19679(2017).

    [56] Power M, Thompson A J, Anastasova S et al. A monolithic force-sensitive 3D microgripper fabricated on the tip of an optical fiber using 2-photon polymerization[J]. Small, 14, 1703964(2018).

    [57] Shen F Q, Yang L, Wu R M et al. Research progress on Monge-Ampère equation method for designing freeform beam-shaping optics[J]. Acta Optica Sinica, 43, 0822010(2023).

    [58] Vicidomini G, Bianchini P, Diaspro A. STED super-resolved microscopy[J]. Nature Methods, 15, 173-182(2018).

    [59] Donnert G, Keller J, Medda R et al. Macromolecular-scale resolution in biological fluorescence microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 11440-11445(2006).

    [60] Balzarotti F, Eilers Y, Gwosch K C et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 355, 606-612(2017).

    [61] Scott T F, Kowalski B A, Sullivan A C et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography[J]. Science, 324, 913-917(2009).

    [62] Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit[J]. Laser & Photonics Reviews, 7, 22-44(2013).

    [63] Bai Y H, Lü H R, Fu X et al. Vortex beam: generation and detection of orbital angular momentum[J]. Chinese Optics Letters, 20, 012601(2022).

    [64] Li L J, Gattass R R, Gershgoren E et al. Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization[J]. Science, 324, 910-913(2009).

    [65] Andrew T L, Tsai H Y, Menon R. Confining light to deep subwavelength dimensions to enable optical nanopatterning[J]. Science, 324, 917-921(2009).

    [66] Zhang S, Huo P C, Zhu W Q et al. Broadband detection of multiple spin and orbital angular momenta via dielectric metasurface[J]. Laser & Photonics Reviews, 14, 2000062(2020).

    [67] Guo Y H, Zhang S C, Pu M B et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation[J]. Light: Science & Applications, 10, 63(2021).

    [68] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 13, 139-150(2014).

    [69] Chen W T, Zhu A Y, Capasso F. Flat optics with dispersion-engineered metasurfaces[J]. Nature Reviews Materials, 5, 604-620(2020).

    [70] Qiu Y C, Tang S W, Cai T et al. Fundamentals and applications of spin-decoupled Pancharatnam-Berry metasurfaces[J]. Frontiers of Optoelectronics, 14, 134-147(2021).

    [71] Wang S, Wang X K, Kan Q A et al. Spin-selected focusing and imaging based on metasurface lens[J]. Optics Express, 23, 26434-26441(2015).

    [72] Li Q T, Dong F L, Wang B et al. Free-space optical beam tapping with an all-silica metasurface[J]. ACS Photonics, 4, 2544-2549(2017).

    [73] Gong Q H, Hu X Y[M]. Photonic crystals: principles and applications(2014).

    [74] Subramania G, Lee Y J, Fischer A J et al. Log-pile TiO2 photonic crystal for light control at near-UV and visible wavelengths[J]. Advanced Materials, 22, 487-491(2010).

    [75] Hahn V, Messer T, Bojanowski N M et al. Two-step absorption instead of two-photon absorption in 3D nanoprinting[J]. Nature Photonics, 15, 932-938(2021).

    [76] Feigel A, Veinger M, Sfez B et al. Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses[J]. Applied Physics Letters, 83, 4480-4482(2003).

    [77] Urbancová P, Pudiš D, Kuzma A et al. IP-dip-based woodpile structures for VIS and NIR spectral range: complex PBG analysis[J]. Optical Materials Express, 9, 4307-4317(2019).

    [78] Liu B R, Dong B, Xin C et al. 4D direct laser writing of submerged structural colors at the microscale[J]. Small, 19, 2204630(2023).

    [79] Deubel M, von Freymann G, Wegener M et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications[J]. Nature Materials, 3, 444-447(2004).

    [80] Fischer J, Wegener M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy[J]. Optical Materials Express, 1, 614-624(2011).

    [81] Frölich A, Fischer J, Zebrowski T et al. Titania woodpiles with complete three-dimensional photonic bandgaps in the visible[J]. Advanced Materials, 25, 3588-3592(2013).

    [82] Yang S H, Ding C L, Zhu D Z et al. High-speed two-photon lithography based on femtosecond laser[J]. Opto-Electronic Engineering, 50, 220133(2023).

    [83] Kondo T, Matsuo S, Juodkazis S et al. Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses[J]. Applied Physics Letters, 82, 2758-2760(2003).

    [84] Kato J I, Takeyasu N, Adachi Y et al. Multiple-spot parallel processing for laser micronanofabrication[J]. Applied Physics Letters, 86, 044102(2005).

    [85] Formanek F, Takeyasu N, Tanaka T et al. Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization[J]. Optics Express, 14, 800-809(2006).

    [86] Lin H, Jia B H, Gu M. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication[J]. Optics Letters, 36, 406-408(2011).

    [87] Geng Q, Wang D E, Chen P F et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization[J]. Nature Communications, 10, 2179(2019).

    [88] Lindenmann N, Balthasar G, Hillerkuss D et al. Photonic wire bonding: a novel concept for chip-scale interconnects[J]. Optics Express, 20, 17667-17677(2012).

    [89] Blaicher M, Billah M R, Kemal J et al. Hybrid multi-chip assembly of optical communication engines by in situ 3D nano-lithography[J]. Light: Science & Applications, 9, 71(2020).

    [90] Hahn V, Kiefer P, Frenzel T et al. Rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials[J]. Advanced Functional Materials, 30, 1907795(2020).

    [91] Dong X Z, Zhao Z S, Duan X M. Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing[J]. Applied Physics Letters, 91, 124103(2007).

    [92] Pearre B W, Michas C, Tsang J M et al. Fast micron-scale 3D printing with a resonant-scanning two-photon microscope[J]. Additive Manufacturing, 30, 100887(2019).

    Tools

    Get Citation

    Copy Citation Text

    Minfei He, Dazhao Zhu, Hongqing Wang, Zhenyu Yang, Fanqi Shen, Rengmao Wu, Cuifang Kuang, Xu Liu. Advancements in Micro-Nano Optical Device Based on Two-Photon Direct Writing[J]. Acta Optica Sinica, 2023, 43(16): 1623013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: May. 24, 2023

    Accepted: Jun. 30, 2023

    Published Online: Aug. 1, 2023

    The Author Email: Liu Xu (liuxu@zju.edu.cn)

    DOI:10.3788/AOS231039

    Topics