Journal of the Chinese Ceramic Society, Volume. 50, Issue 2, 466(2022)
Modeling of Effective Thermal Conductivity of Cement Paste
[1] [1] ZGUEB R, BRICHNI A, YACOUBI N. Improvement of the thermal properties of Sorel cements by polyvinyl acetate: Consequences on physical and mechanical properties[J]. Energy Build, 2018, 169: 1-8.
[4] [4] ALLAN M L, Materials characterization of superplasticized cement- sand grout[J]. Cem Concr Res, 2000, 30(6): 937-942.
[6] [6] ABDELALIM A, ABDALLAH S, EASAWI K, et al. Thermal properties of hydrated cement pastes studied by the photoacoustic technique[J]. J Phys Conf Ser, 2010, 214: 012136.
[9] [9] KIM K M, JEON S E, KIM J K, et al. An experimental study on thermal conductivity of concrete[J]. Cem Concr Res, 2003, 33(3): 363-371.
[10] [10] BAGHBAN M H, HOVDE P J, JACOBSEN S, et al. Analytical and experimental study on thermal conductivity of hardened cement pastes [J]. Mater Struct, 2013, 46: 1537-1546.
[11] [11] TANG S W, CHEN E, SHAO H Y, et al. A fractal approach to determine thermal conductivity in cement pastes[J]. Constr Build Mater, 2015, 74: 73-82.
[13] [13] JITTABUT P, PINITSOONTORN S, THONGBAI P, et al. Effect of nano-silica addition on the mechanical properties and thermal conductivity of cement composites[J]. Chiang Mai J Sci, 2016, 43(5): 1160-1170.
[14] [14] SONG X, ZHENG R, R. LI R, et al. Study on thermal conductivity of cement with thermal conductive materials in geothermal well[J]. Geothermics, 2019, 81: 1-11.
[15] [15] BENAZZOUK A, DOUZANE O, MEZREB K, et al. Thermal conductivity of cement composites containing rubber waste particles: Experimental study and modeling[J]. Constr Build Mater, 2008, 22(4): 573-579.
[16] [16] JIANG J, LU Z, LI J, et al. Preparation and properties of nanopore-rich lightweight cement paste based on swelled bentonite[J]. Constr Build Mater, 2019, 199: 72-81.
[17] [17] MOUNANGA P, KHELIDJ A, BASTIAN G. Experimental study and modeling approaches for the thermal conductivity evolution of hydrating cement paste[J]. Adv Cem Res, 2004, 16(3): 95-103.
[18] [18] MESHGIN P, XI Y. Multi-scale composite models for the effective thermal conductivity of PCM-concrete[J]. Constr Build Mater, 2013, 48: 371-378.
[19] [19] YU W, FRANCE D M, ROUTBORT J L, et al. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements[J]. Heat Transf Eng, 2008, 29(5): 432-460.
[20] [20] LI H, ZENG Q, XU S. Effect of pore shape on the thermal conductivity of partially saturated cement-based porous composites[J]. Cem Concr Compos, 2017, 81: 87-96.
[21] [21] CHEN Y, ZHOU S, HU R, et al. A homogenization-based model for estimating effective thermal conductivity of unsaturated compacted bentonites[J]. Int J Heat Mass Transf, 2015, 83: 731-740.
[22] [22] XU S, LIU J, ZENG Q. Towards better characterizing thermal conductivity of cement-based materials: The effects of interfacial thermal resistance and inclusion size[J]. Mater Des, 2018, 157: 105-118.
[23] [23] QOMI M J A, ULM F J, PELLENG R J M. Physical origins of thermal properties of cement paste[J]. Phys Rev Appl, 2015, 3(6): 064010.
[24] [24] HONORIO T, BARY B, BENBOUDJEMA F. Thermal properties of cement-based materials: Multiscale estimations at early-age[J]. Cem Concr Compos, 2018, 87: 205-219.
[25] [25] TORRE N G D L, BRUQUE S, CAMPO J, et al. The superstructure of C3S from synchrotron and neutron powder diffraction and its role in quantitative phase analyses[J]. Cem Concr Res, 2002, 32(9): 1347- 1356.
[26] [26] YAMNOVA N A, ZUBKOVA N V, EREMIN N N, et al. Crystal structure of larnite β-Ca2SiO4 and specific features of polymorphic transitions in dicalcium orthosilicate[J]. Crystallogr Rep, 2011, 56(2): 210-220.
[27] [27] MOON J, YOON S, WENTZCOVITH R M, et al. Elastic properties of tricalcium aluminate from high-pressure experiments and first- principles calculations[J]. J Am Ceram Soc, 2012, 95(9): 2972-2978.
[28] [28] JUPE A C, COCKCROFT J K, BARNES P, et al. The site occupancy of Mg in the brownmillerite structure and its effect on hydration properties: an X-ray/neutron diffraction and EXAFS study[J]. J Appl Crystallogr, 2001, 34(1): 55-61.
[30] [30] LAGER G A, DOWNS R T, ORIGLIER M, et al. High-pressure single-crystal X-ray diffraction study of katoite hydrogarnet: Evidence for a phase transition from Ia3d →I43d symmetry at 5 GPa[J]. Am Mineral, 2002, 87(5/6): 642-647.
[31] [31] BULLARD J W, STUTZMAN P E. Analysis of CCRL proficiency cements 151 and 152 using the virtual cement and concrete testing laboratory[J]. Cem Concr Res, 2006, 36(8): 1548-1555.
[32] [32] WATTS B E, TAO C, FERRARO C C, et al. Proficiency analysis of VCCTL results for heat of hydration and mortar cube strength[J]. Constr Build Mater, 2018, 161: 606-617.
[33] [33] GEIKER M, NIELSEN E P, HERFORT D. Prediction of chloride ingress and binding in cement paste[J]. Mater Struct, 2007, 40: 405-417.
[34] [34] ZHANG G, REN Q, HE J, et al. New understanding of early hydration of C4AF under surface vitrification[J]. Powder Technol, 2021, 377: 372-378.
Get Citation
Copy Citation Text
DU Yuanbo, GE Yong. Modeling of Effective Thermal Conductivity of Cement Paste[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 466
Category:
Received: May. 29, 2021
Accepted: --
Published Online: Nov. 23, 2022
The Author Email: Yuanbo DU (915439482@qq.com)
CSTR:32186.14.