Journal of Inorganic Materials, Volume. 36, Issue 11, 1125(2021)

First-principles Study on Nanoscale Tungsten Oxide: a Review

Linyan ZHAO1, Yangsi LIU1,2,3, Xiaoli XI1,2,4、*, Liwen MA1,2, and Zuoren NIE1,2,4
Author Affiliations
  • 11. Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
  • 22. National Engineering Laboratory for Industrial Big-data Application Technology, Beijing University of Technology, Beijing 100124, China
  • 33. Beijing GUYUE New Materials Research Institute Beijing 100124, China
  • 44. Collaborative Innovation Center of Capital Resource-Recycling Material Technology, Beijing University of Technology, Beijing 100124, China
  • show less
    References(84)

    [15] M KARADENIZ S, D TATAR, M ERTUGRUL et al. Structural, optical and electrochromic properties of WO3 thin films prepared by chemical spray pyrolysis versus spin coating technique. Spectroscopy and Spectral Analysis, 38, 2982-2988(2018).

    [30] M DIRAC P A. The Principles of Quantum Mechanics, 1-22(1958).

    [32] M BORN, K HUANG. Dynamical Theory of Crystal Lattices, 104-113(1958).

    [37] W KOHN, J SHAM L. Self-consistent equations including exchange and correlation effects. Physical Review, 140, 1133-1138(1965).

    [40] E FERMI. Un metodo statistico per la determinazione di alcune Priorieta dell atome. Rend. Accad. Naz. Lincei, 6, 602(1927).

    [41] M DIRAC P A. Note on exchange phenomena in the thomas-fermi atom. Proceedings of the Cambridge Philosophical Royal Society, 26, 376(1930).

    [42] C SLATER J. A simplification of the hartree-fock method. Self-Consistent Fields in Atoms, 81, 215-230(1975).

    [59] L TANG B, H JIANG G, X CHEN W et al. First-principles study on hexagonal WO3 for HCHO gas sensing application. Acta Metallurgica Sinica-English Letters, 28, 772-780(2015).

    [60] X HAN, H YIN X. Density functional theory study of the NO2-sensing mechanism on a WO3(001) surface: the role of surface oxygen vacancies in the formation of NO and NO3. Molecular Physics, 114, 3546-3555(2016).

    [61] X QIN Y, M LIU, Y HUA D. First-principles study of the electronic structure and NO2-sensing properties of Ti-doped W18O49 nanowire. Acta Physica Sinica, 63, 207101(2014).

    [62] X QIN Y, H YE Z. DFT study on interaction of NO2 with the vacancy-defected WO3 nanowires for gas-sensing. Sensors and Actuators B-Chemical, 222, 499-507(2016).

    [63] L BAI S, W ZHANG K, S WANG L et al. Synthesis mechanism and gas-sensing application of nanosheet-assembled tungsten oxide microspheres. Journal of Materials Chemistry A, 2, 7927-7934(2014).

    [64] N YAKOVKIN I, M GUTOWSKI. Driving force for the WO3(001) surface relaxation. Surface Science, 601, 1481-1488(2007).

    [66] H YANG H, G SUN H, T LI Q et al. Structural, electronic, optical and lattice dynamic properties of the different WO3 phases: first-principle calculation. Vacuum, 164, 411-420(2019).

    [68] T ZHENG T, W SANG, H HE Z et al. Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution. Nano Letters, 17, 7968-7973(2017).

    [70] G WANG F, C DI VALENTIN, G PACCHIONI. Doping of WO3 for photocatalytic water splitting: hints from density functional theory. Journal of Physical Chemistry C, 116, 8901-8909(2012).

    [71] T ZHANG, L ZHU Z, N CHEN H et al. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study. Nanoscale, 7, 2933-2940(2015).

    [72] C HUANG W, X WANG J, L BIAN et al. Oxygen vacancy induces self-doping effect and metalloid LSPR in non-stoichiometric tungsten suboxide synergistically contributing to the enhanced photoelectrocatalytic performance of WO3-x/TiO2-x heterojunction. Physical Chemistry Chemical Physics, 20, 17268-17278(2018).

    [73] N ZHANG, Y LI X, F LIU Y et al. Defective tungsten oxide hydrate nanosheets for boosting aerobic coupling of amines: synergistic catalysis by oxygen vacancies and bronsted acid sites. Small, 13, 1701354(2017).

    [74] N ZHANG, A JALIL, X WU D et al. Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation. Journal of the American Chemical Society, 140, 9434-9443(2018).

    [75] N ZHANG, R LONG, C GAO et al. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Science China-Materials, 61, 771-805(2018).

    [76] Q LI M, N ZHANG, R LONG et al. PdPt alloy nanocatalysts supported on TiO2: maneuvering metal-hydrogen interactions for light-driven and water-donating selective alkyne semihydrogenation. Small, 13, 1604173(2017).

    [77] Z WANG, Y WANG X, S CONG et al. Fusing electrochromic technology with other advanced technologies: a new roadmap for future development. Materials Science & Engineering R-Reports, 140, 100524(2020).

    [78] J YAO Y, Q ZHAO, W WEI et al. WO3 quantum-dots electrochromism. Nano Energy, 68, 104350(2020).

    [79] H LIN, F ZHOU, P LIU C et al. Non-grotthuss proton diffusion mechanism in tungsten oxide dihydrate from first-principles calculations. Journal of Materials Chemistry A, 2, 12280-12288(2014).

    [80] A HJELM, G GRANQVIST C, M WILLS J. Electronic structure and optical properties of WO3, LiWO3, NaWO3, and HWO3. Physical Review B, 54, 2436-2445(1996).

    [81] J WISEMAN P, G DICKENS P. Neutron-diffraction studies of cubic tungsten bronzes. Journal of Solid State Chemistry, 17, 91-100(1976).

    [82] S YANG, J CHA, C KIM J et al. Monolithic interface contact engineering to boost optoelectronic performances of 2D semiconductor photovoltaic heterojunctions. Nano Letters, 20, 2443-2451(2020).

    [85] P KOCER C, J GRIFFITH K, P GREY C et al. Cation disorder and lithium insertion mechanism of Wadsley-Roth crystallographic shear phases from first principles. Journal of the American Chemical Society, 141, 15121-15134(2019).

    [86] A KARIM N, K KAMARUDIN S, K SHYUAN L et al. Study on the electronic properties and molecule adsorption of W18O49 nanowires as a catalyst support in the cathodes of direct methanol fuel cells. Journal of Power Sources, 288, 461-472(2015).

    [87] F ZHANG Z, L CHEN J, B LI H et al. Vapor-solid nanotube growth via sidewall epitaxy in an environmental transmission electron microscope. Crystal Growth & Design, 17, 11-15(2017).

    [88] F ZHANG Z, Y WANG, B LI H et al. Atomic-scale observation of vapor-solid nanowire growth via oscillatory mass transport. ACS Nano, 10, 763-769(2016).

    [89] F ZHANG Z, P SHENG L, L CHEN et al. Atomic-scale observation of pressure-dependent reduction dynamics of W18O49 nanowires using environmental TEM. Physical Chemistry Chemical Physics, 19, 16307-16311(2017).

    [90] L CHEN, S LAM, H ZENG Q et al. Effect of cation intercalation on the growth of hexagonal WO3 nanorods. Journal of Physical Chemistry C, 116, 11722-11727(2012).

    [91] S JIANG, M CHEKINI, B QU Z et al. Chiral ceramic nanoparticles and peptide catalysis. Journal of the American Chemical Society, 139, 13701-13712(2017).

    [92] J GU L, L MA C, H ZHANG X et al. Populating surface-trapped electrons towards SERS enhancement of W18O49 nanowires. Chemical Communications, 54, 6332-6335(2018).

    [93] F MEHMOOD, R PACHTER, R MURPHY N et al. Effect of oxygen vacancies on the electronic and optical properties of tungsten oxide from first principles calculations. Journal of Applied Physics, 120, 233105(2016).

    [94] B MIGAS D, L SHAPOSHNIKOV V, N RODIN V et al. Tungsten oxides. I. Effects of oxygen vacancies and doping on electronic and optical properties of different phases of WO3. Journal of Applied Physics, 108, 093713(2010).

    [95] W SAI L, L TANG L, M HUANG X et al. Lowest-energy structures of (WO3)n(2≤n≤12) clusters from first-principles global search. Chemical Physics Letters, 544, 7-12(2012).

    [96] X HUANG, J ZHAI H, J LI et al. On the structure and chemical bonding of tri-tungsten oxide clusters W3On- and W3On (n=7-10): W3O8 as a potential molecular model for O-deficient defect sites in tungsten oxides. Journal of Physical Chemistry A, 110, 85-92(2006).

    [98] G JIANG P, Y XIAO Y, J LIU W et al. Hydrogen reduction characteristics of WO3 based on density functional theory. Results in Physics, 12, 896-902(2019).

    [99] J LIU W, G JIANG P, Y XIAO Y et al. A study of the hydrogen adsorption mechanism of W18O49 using first-principles calculations. Computational Materials Science, 154, 53-59(2018).

    Tools

    Get Citation

    Copy Citation Text

    Linyan ZHAO, Yangsi LIU, Xiaoli XI, Liwen MA, Zuoren NIE. First-principles Study on Nanoscale Tungsten Oxide: a Review[J]. Journal of Inorganic Materials, 2021, 36(11): 1125

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: REVIEW

    Received: Nov. 28, 2020

    Accepted: --

    Published Online: Dec. 20, 2021

    The Author Email: XI Xiaoli (xixiaoli@bjut.edu.cn)

    DOI:10.15541/jim20200683

    Topics