Infrared and Laser Engineering, Volume. 50, Issue 4, 20200297(2021)

Design of LiDAR optical machine system for airborne single frequency bathymetry

Guoqing Zhou1,2, Haocheng Hu1,3, Jiasheng Xu1,4, Xiang Zhou1,2,3, and Xueqin Nong5
Author Affiliations
  • 1Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, Guilin 541006, China
  • 2School of Microelectronics, Tianjin University, Tianjin 300072, China
  • 3College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541006, China
  • 4College of Earth Sciences, Guilin University of Technology, Guilin 541006, China
  • 534 Research Institute of China Electronics Technology Group Corporation, Guilin 541004, China
  • show less
    Figures & Tables(31)
    Single frequency LiDAR sounding principle
    System structure of LiDAR. a-Integrated control unit; b-Power supply; c-532 nm laser; d-Motor driver; e-24V DC servo motor; f-Reflective wedge; g-Optical emission channel; h-Optical receiving channel; i-APD and its processing circuit; j-PMT and its processing circuit; k-Area array multispectral high resolution CCD camera; l-POS system
    Zemax simulation reflection type wedge scanning unit
    Field loss factors corresponding to different water depths and receiving field of view
    Recognition factors for different water depths changing with field of view
    Recognition factor of 50 m water depth changing with field of view
    Structure of Kirk three-piece objective lens set
    Optical path of objective lens group
    MTF curve of objective lens group
    Improved Kenneth eyepiece structure
    Structure of PMT eyepiece group optical path
    Structure of APD eyepiece group optical path
    Optical path of LiDAR overall receiving telescope system
    Distribution of diffuse spots in each field of view
    Optical-mechanical system of LiDAR
    DC motor speed regulation circuit
    Schematic diagram of receiving and transmitting light system
    Grid scanning pattern
    Lissajous scanning pattern
    Lissajous optimal scan
    Measured waveform data
    • Table 1. [in Chinese]

      View table
      View in Article

      Table 1. [in Chinese]

      PartsParameterValue
      LaserWavelength532 nm
      Peak power100 kW
      Pulse width3 ns
      Repetition frequency1 kHz
      Divergence angle0.2 mrad
      Scanning unitWedge angle
      Wedge diameter40 mm
      Wedge thickness15 mm
      Angle between the bottom of wedge and vertical axis45º
      Motor speed540, 600 r/min
      Rated voltage of motor24 V
      Rated power of motor100 W
      Receiving Optical unitReceiving field angle95 mrad
      Entrance pupil diameter82 mm
      Exit pupil diameter8 mm
      Magnification10.25× and 42×
      Bandwidth±1 nm
      Overall systemWeight25 kg
      Volume1050 mm×400 mm× 460 mm
      Mode of deliveryUAV
      Flight speed0-10 m/s
      Flight height150 m
      Run time20 min
      Scanning width52.9 m
      Scanning point density1/m2
      Best measuring depth25 m
      Maximum measuring depth50 m
    • Table 2. [in Chinese]

      View table
      View in Article

      Table 2. [in Chinese]

      ParametersParameters nameParameters valuesCalculation formula(Parameters see column 1)
      θrEquivalent receiving FOVθr=θr0cosθa/(ncosθw)
      HEquivalent flight height205.781 4 m H0=150 m H=H0n(cosθw/cosθa)3
      hWater depth measurement25 m
      mScattering angle mean cosine function8
      bfForward scattering coefficient0.4
      θwAngle between laser direction and vertical direction6.74°θa=10° sinθa=nsinθw
      rrEquivalent radius82.689 m m rr0=82 mm rr=rr0cosθw/cosθa
      rlEquivalent radius of laser beam cross section3.054 m m rl0=3 mm rl=rl0cosθw/cosθa
      θlEquivalent laser divergence angle0.1492 m rad θl0=0.2 mrad θl=θl0cosθa/(ncosθw)
      nRefractive1.333
    • Table 3. [in Chinese]

      View table
      View in Article

      Table 3. [in Chinese]

      Value of qccoefficient Visibility range/km
      1.6V>50
      1.310<V<50
      0.16 V+0.340.5<V<10
      0V<0.5
    • Table 4. [in Chinese]

      View table
      View in Article

      Table 4. [in Chinese]

      LensRadius of curvature/mmFocal length/mmMaterialRefractive index (532 nm)DistanceSurface/mm
      1198.543213.098ZF141.931712air→ZF14
      2600.383644.395ZF141.9317111.411ZF14→air
      3−353.382−564.779F2HT1.625710air→F2HT
      4156.494250.110F2HT1.625736.799F2HT→air
      5513.419551.056ZF141.931712air→ZF14
      6−481.289516.571ZF141.9317307.790ZF14→air
    • Table 5. [in Chinese]

      View table
      View in Article

      Table 5. [in Chinese]

      LensRadius of curvature/mmFocal length/mmMaterial/refractive (532 nm)Distance to next side/mmSurface
      7$\infty $$\infty $SF66/1.937 58air→SF66
      8−135.530144.565SF66/1.937 519.907SF66→air
      948.61751.858SF66/1.937 57.990air→SF66
      1092.216−98.364SF66/1.937 516.1SF66→air
      1163.20076.190LASF14A/1.829 510air→LASF14A
      12−316.269−2 928.417LASF14A/1.829 57.6LASF14A→SF66
      13143.183−152.728SF66/1.937 517.172SF66→air
    • Table 6. [in Chinese]

      View table
      View in Article

      Table 6. [in Chinese]

      LensRadius of curvature/mmFocal length/mmMaterial / refractive (532 nm)Distance to next side/mmSurface
      7$\infty $$\infty $SF66/1.937 54air→SF66
      841.854−44.644SF66/1.937 530.426SF66→air
      952.44355.939SF66/1.937 54.5air→SF66
      10−47.17350.318SF66/1.937 51SF66→air
      1115.27618.416LASF14A/1.829 57.5air→LASF14A
      12−22.175−205.324LASF14A/1.829 54LASF14A→SF66
      1319.558−20.862SF66/1.937 510.053SF66→air
    • Table 7. [in Chinese]

      View table
      View in Article

      Table 7. [in Chinese]

      LensOptical transmittanceSurface
      Objective 189.9%air→ZF14
      Objective 289.9%ZF14→air
      Objective 394.32%air→F2HT
      Objective 494.32%F2HT→air
      Objective 589.9%air→ZF14
      Objective 689.9%ZF14→air
      Eyepiece 789.8%air→SF66
      Eyepiece 889.8%SF66→air
      Eyepiece 989.8%air→SF66
      Eyepiece 1089.8%SF66→air
      Eyepiece 1191.41%air→LASF14A
      Eyepiece 1299.9%LASF14A→SF66
      Eyepiece 1389.8%SF66→air
    • Table 8. [in Chinese]

      View table
      View in Article

      Table 8. [in Chinese]

      ComponentWeight/kg
      Power source5
      532 nm laser3
      80 flange servo motor0.75
      Motor driver0.75
      Optical pipeline2.1(7 series aluminum)
      APD or PMT and its circuit0.5
      IMU2.6
      Integrated control system3.5
      CCD camera0.35
      Other0.95
      Outsourcing network5 (PVC)
      Total25
    • Table 9. [in Chinese]

      View table
      View in Article

      Table 9. [in Chinese]

      ComponentVolume/mm3
      Power source188×156×97.5
      532 nm laser104×104×166.5
      80 flange servo motor100×60×70
      Motor driver150×100×40
      Optical pipeline80(inside diameter)×660
      IMU200×116×80
      Integrated control system180×120×100
      Outsourcing network1 050×460×400
    • Table 10. [in Chinese]

      View table
      View in Article

      Table 10. [in Chinese]

      PlanOrder numberFlight speed/m·s−1Flight height/mScanning point density/m−2Scanning width/mDistance/mArea/m2
      1a61002.4235.26361 269.36
      b81002.0735.26481 692.48
      c101001.8135.26602 137.20
      2a61501.2952.89361 904.04‬
      b81501.1452.89482 538.72
      c101501.0252.89603 173.40
      3a62000.8170.53362 539.08
      b82000.7370.53483 385.44
      c102000.6670.53604231.80
    Tools

    Get Citation

    Copy Citation Text

    Guoqing Zhou, Haocheng Hu, Jiasheng Xu, Xiang Zhou, Xueqin Nong. Design of LiDAR optical machine system for airborne single frequency bathymetry[J]. Infrared and Laser Engineering, 2021, 50(4): 20200297

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers & Laser optics

    Received: Dec. 15, 2020

    Accepted: --

    Published Online: Jul. 30, 2021

    The Author Email:

    DOI:10.3788/IRLA20200297

    Topics