Journal of the Chinese Ceramic Society, Volume. 51, Issue 2, 397(2023)
Machine Learning for the Bandgap of Organic?Inorganic Hybrid Perovskites with Voronoi Structure Representation
[1] [1] NA G R. A first-principles study on two-dimensional hybrid organic-inorganic halide perovskite optoelectronic materials[D]. Jilin: Jilin University, 2021.
[2] [2] GLADKIKH V, KIM D Y, HAJIBABAEI A, et al. Machine learning for predicting the band gaps of ABX3 perovskites from elemental properties[J]. Phys Chem C, 2020, 124(16): 8905?8918.
[3] [3] ZHOU Y, GAME O S, PANG S, et al. Microstructures of organometal trihalide perovskites for solar cells: Their evolution from solutions and characterization[J]. J Phys Chem Lett, 2015, 6(23): 4827?4839.
[4] [4] BECKE A D. A new mixing of Hartree-Fock and local density functional theories[J]. J Chem Phys, 1993, 98(2): 1372?1377.
[5] [5] PEVERATI R, TRUHLAR D G. Improving the accuracy of hybrid meta-GGA density functionals by range separation[J]. J Phys Chem Lett, 2011, 2(21): 2810?2817.
[6] [6] ARYASETIAWAN F, GUNNARSSON O. The GW method[J]. Rep Progress Phys, 1998, 61(3): 237.
[7] [7] WEI J, CHU X, SUN X Y, et al. Machine learning in materials science[J]. InfoMat, 2019, 1(3): 338?358.
[8] [8] MORGAN D, JACOBS R. Opportunities and challenges for machine learning in materials science[J]. Annual Rev Mater Res, 2020, 50: 71?103.
[9] [9] WU T, WANG J. Global discovery of stable and non-toxic hybrid organic-inorganic perovskites for photovoltaic systems by combining machine learning method with first principle calculations[J]. Nano Energy, 2019, 66: 104070.
[10] [10] TEUNISSEN J L, DA PIEVE F. Molecular bond engineering and feature learning for the design of hybrid organic-inorganic perovskite solar cells with strong noncovalent halogen-cation interactions[J]. J Phys Chem C, 2021, 125(45): 25316?25326.
[11] [11] OUYANG R, CURTAROLO S, AHMETCIK E, et al. SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates[J]. Phys Rev Mater, 2018, 2(8): 083802.
[12] [12] OUYANG R, AHMETCIK E, CARBOGNO C, et al. Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO[J]. J Phys: Materials, 2019, 2(2): 024002.
[13] [13] BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Sci Adv, 2018, 5(2): eaav0693.
[14] [14] OUYANG R. Exploiting ionic radii for rational design of halide perovskites[J]. Chem Mater, 2019, 32(1): 595?604.
[15] [15] GUO Z, HU S B, HAN Z K, et al. Improving symbolic regression for predicting materials properties with iterative variable selection[J]. J Chem Theory Comput, 2022, 18(8): 4945?4951.
[16] [16] LI S, LIU Y, CHEN D, et al. Encoding the atomic structure for machine learning in materials science[J]. Wiley Interdiscipl Rev: Comput Molecul Sci, 2022, 12(1): e1558.
[17] [17] HIMANEN L, J?GER M O J, MOROOKA E V, et al. DScribe: Library of descriptors for machine learning in materials science[J]. Computer Phys Commun, 2020, 247: 106949.
[18] [18] AURENHAMMER F. Voronoi diagrams-A survey of a fundamental geometric data structure[J]. ACM Comput Surveys (CSUR), 1991, 23(3): 345?405.
[19] [19] WARD L, LIU R, KRISHNA A, et al. Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations[J]. Phys Rev B, 2017, 96(2): 024104.
[20] [20] GHOSH S, MALLETT R L. Voronoi cell finite elements[J]. Comput Struct, 1994, 50(1): 33?46.
[21] [21] WANG J, JU L, WANG X. An edge-weighted centroidal Voronoi tessellation model for image segmentation[J]. IEEE Transact Image Process, 2009, 18(8): 1844?1858.
[22] [22] BHATTACHARYA P, GAVRILOVA M L. Roadmap-based path planning-using the voronoi diagram for a clearance-based shortest path[J]. IEEE Robot Automn Magazine, 2008, 15(2): 58?66.
[23] [23] CIREGAN D, MEIER U, SCHMIDHUBER J. Multi-column deep neural networks for image classification[C]//2012 IEEE conference on computer vision and pattern recognition. IEEE, 2012: 3642?3649.
[24] [24] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: Machine learning in Python[J]. J Machine Learn Res, 2011, 12: 2825?2830.
[25] [25] HO T K. Proceedings of 3rd international conference on document analysis and recognition[J]. IEEE, 1995, 1: 278?282.
[26] [26] KIM C, HUAN T D, KRISHNAN S, et al. A hybrid organic-inorganic perovskite dataset[J]. Scient Data, 2017, 4(1): 1?11.
[27] [27] WebElements, https://www.webelements.com [2022-11-02].
[28] [28] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Cryst Section A, 1976, 32(5): 751?767.
[29] [29] PETTIFOR D G. A chemical scale for crystal-structure maps[J]. Solid State Commun, 1984, 51(1): 31?34.
[30] [30] COTTRELL T L. The strengths of chemical bonds[M]. Butterworths Scientific Publications, 1958.
[31] [31] LI C, SOH K C K, WU P. Formability of ABO3 perovskites[J]. J Alloys Compounds, 2004, 372(1/2): 40?48.
[32] [32] GOLDSCHMIDT V M. Die gesetze der krystallochemie[J]. Naturwissenschaften, 1926, 14(21): 477?485.
[33] [33] SAAL J E, KIRKLIN S, AYKOL M, et al. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD)[J]. J Materiomics, 2013, 65(11): 1501?1509.
[34] [34] KIRKLIN S, SAAL J E, MEREDIG B, ET AL. THE OPEN QUANTUM MATERIALS DATABASE (OQMD): ASSESSING THE ACCURACY OF DFT FORMATION ENERGIES[J]. NPJ COMPUT MATER, 2015, 1(1): 1?15.
Get Citation
Copy Citation Text
WANG Jingzhou, OUYANG Runhai. Machine Learning for the Bandgap of Organic?Inorganic Hybrid Perovskites with Voronoi Structure Representation[J]. Journal of the Chinese Ceramic Society, 2023, 51(2): 397
Special Issue:
Received: Nov. 2, 2022
Accepted: --
Published Online: Mar. 11, 2023
The Author Email: Jingzhou WANG (cnwangjingzhou@163.com)