Journal of the Chinese Ceramic Society, Volume. 51, Issue 9, 2478(2023)
Recent Progress on Preparation of Transparent Ceramics via Glass Crystallization
[1] [1] CHEN I W, WANG X H. Sintering dense nanocrystalline ceramics without final-stage grain growth[J]. Nature, 2000, 404(6774): 168-171.
[2] [2] CHEN S M, WU Y F, CUI P X, et al. Cation distribution in ZnCr2O4 nanocrystals investigated by X-ray absorption fine structure spectroscopy[J]. J Phys Chem C, 2013, 117(47): 25019-25025.
[3] [3] IKESUE A, AUNG Y L. Ceramic laser materials[J]. Nature Photon, 2008, 2(12): 721-727.
[4] [4] KRELL A, KLIMKE J, HUTZLER T. Transparent compact ceramics: inherent physical issues[J]. Opt Mater, 2009, 31(8): 1144-1150.
[5] [5] WANG S F, ZHANG J, LUO D W, et al. Transparent ceramics: processing, materials and applications[J]. Prog Solid State Chem, 2013, 41(1-2): 20-54.
[6] [6] WON R. Ceramic future[J]. Nat Photonics, 2008, 2(4): 216-217.
[7] [7] ABE Y, KAKEGAWA K, USHIJIMA H, et al. Fabrication of optically transparent lead lanthanum zirconate titanate ((Pb, La)(Zr, Ti)O3) ceramics by a three-stage-atmosphere-sintering technique[J]. J Am Ceram Soc, 2002, 85(2): 473-475.
[8] [8] HAERTLING G H. Improved hot-pressed electrooptic ceramics in the (Pb, La)(Zr, Ti)O3 system[J]. J Am Ceram Soc, 1971, 54(6): 303-309.
[9] [9] IKESUE A, KAMATA K, YOSHIDA K. Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state lasers[J]. J Am Ceram Soc, 1995, 78(9): 2545-2547.
[10] [10] JIN X H, GAO L, SUN J. Highly transparent alumina spark plasma sintered from common-grade commercial powder: the effect of powder treatment[J]. J Am Ceram Soc, 2010, 93(5): 1232-1236.
[11] [11] LI J G, IKEGAMI T, LEE J H, et al. Low-temperature fabrication of transparent yttrium aluminum garnet (YAG) ceramics without additives[J]. J Am Ceram Soc, 2000, 83(4): 961-963.
[12] [12] PAULING L, HENDRICKS S B. The crystal structures of hematite and corundum[J]. J Am Chem Soc, 1925, 47(3): 781-790.
[13] [13] SHANNIGRAHI S R, CHOUDHARY R N P. Structural and dielectric properties of Sol-gel derived PLZT (x/60/40)[J]. J Electroceramics, 2000, 5(3): 201-209.
[14] [14] KSHETRI Y K, JOSHI B, LEE S W. Intense visible upconversion emission in transparent (Ho3+, Er3+)-α-Sialon ceramics under 980nm laser excitation[J]. J Eur Ceram Soc, 2016, 36(16): 4215-4224.
[15] [15] SANGHERA J, KIM W, VILLALOBOS G, et al. Ceramic laser materials: past and present[J]. Opt Mater, 2013, 35(4): 693-699.
[16] [16] SCHNEIDER H, SCHREUER J, HILDMANN B. Structure and properties of mullite-a review[J]. J Eur Ceram Soc, 2008, 28(2): 329-344.
[17] [17] WANG X J, XIE J J, WANG Z J, et al. Fabrication and properties of Y2Ti2O7 transparent ceramics with excess Y content[J]. Ceram Int, 2018, 44(8): 9514-9518.
[18] [18] WU J H, ZHENG G J, LIU X F, et al. Near-infrared laser driven white light continuum generation: materials, photophysical behaviours and applications[J]. Chem Soc Rev, 2020, 49(11): 3461-3483.
[19] [19] WOLLMERSHAUSER J A, FEIGELSON B N, GORZKOWSKI E P, et al. An extended hardness limit in bulk nanoceramics[J]. Acta Mater, 2014, 69: 9-16.
[20] [20] ZOU Y T, HE D W, WEI X K, et al. Nanosintering mechanism of MgAl2O4 transparent ceramics under high pressure[J]. Mater Chem Phys, 2010, 123(2-3): 529-533.
[21] [21] KRELL A, KLIMKE J, HUTZLER T. Advanced spinel and sub-μm Al2O3 for transparent armour applications[J]. J Eur Ceram Soc, 2009, 29(2): 275-281.
[22] [22] PETIT J, DETHARE P, SERGENT A, et al. Sintering of α-alumina for highly transparent ceramic applications[J]. J Eur Ceram Soc, 2011, 31(11): 1957-1963.
[23] [23] DERICIOGLU A F, BOCCACCINI A R, DLOUHY I, et al. Effect of chemical composition on the optical properties and fracture toughness of transparent magnesium aluminate spinel ceramics[J]. Mater Trans, 2005, 46(5): 996-1003.
[24] [24] SUTORIK A C, GILDE G, SWAB J J, et al. Transparent solid solution magnesium aluminate spinel polycrystalline ceramic with the alumina-rich composition MgO·1.2 Al2O3[J]. J Am Ceram Soc, 2012, 95(2): 636-643.
[25] [25] MOUZON J, MAITRE A, FRISK L, et al. Fabrication of transparent yttria by HIP and the glass-encapsulation method[J]. J Eur Ceram Soc, 2009, 29(2): 311-316.
[26] [26] SERIVALSATIT K, BALLATO J. Submicrometer grain-sized transparent erbium-doped scandia ceramics[J]. J Am Ceram Soc, 2010, 93(11): 3657-3662.
[27] [27] SEELEY Z M, KUNTZ J D, CHEREPY N J, et al. Transparent Lu2O3: Eu ceramics by sinter and HIP optimization[J]. Opt Mater, 2011, 33(11): 1721-1726.
[28] [28] HUANG Y H, JIANG D L, ZHANG J X, et al. Synthesis of mono-dispersed spherical Nd: Y2O3 powder for transparent ceramics[J]. Ceram Int, 2011, 37(8): 3523-3529.
[29] [29] KIM B N, HIRAGA K, MORITA K, et al. Microstructure and optical properties of transparent alumina[J]. Acta Mater, 2009, 57(5): 1319-1326.
[30] [30] ROUSSEL N, LALLEMANT L, DURAND B, et al. Effects of the nature of the doping salt and of the thermal pre-treatment and sintering temperature on spark plasma sintering of transparent alumina[J]. Ceram Int, 2011, 37(8): 3565-3573.
[31] [31] WANG C, ZHAO Z. Transparent polycrystalline ruby ceramic by spark plasma sintering[J]. Mater Res Bull, 2010, 45(9): 1127-1131.
[32] [32] HUANG P, ZHOU B Y, ZHENG Q, et al. Nano wave plates structuring and index matching in transparent hydroxyapatite-YAG: Ce composite ceramics for high luminous efficiency white light-emitting diodes[J]. Adv Mater, 2020, 32(1): 1905951.
[33] [33] LI S X, WANG L, HIROSAKI N, et al. Color conversion materials for high-brightness laser-driven solid-state lighting[J]. Laser Photon Rev, 2018, 12(12): 1800173.
[34] [34] YAO Q, HU P, SUN P, et al. YAG: Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting[J]. Adv Mater, 2020, 32(19): 1907888.
[35] [35] ALAHRACH S, AL SAGHIR K, CHENU S, et al. Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization[J]. Chem Mater, 2013, 25(20): 4017-4024.
[36] [36] ALLIX M, ALAHRACHE S, FAYON F, et al. Highly transparent BaAl4O7 polycrystalline ceramic obtained by full crystallization from glass[J]. Adv Mater, 2012, 24(41): 5570-5575.
[38] [38] MA X G, LI X Y, LI J Q, et al. Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics[J]. Nat Commun, 2018, 9(1): 1-9.
[39] [39] AL SAGHIR K. Transparent ceramics by full crystallization from glass: application to strontium aluminosilicates[D]. Orléans: Université d’Orléans, 2014.
[40] [40] GIBBS J. On the equilibrium of heterogeneous substances[J]. Am J Sci Arts, 1878, s3-16: 441-458.
[41] [41] FARKAS L. Velocity of nucleation in supersaturated vapors[J]. Z Phys Chem, 1927, 125: 239.
[42] [42] VOLMER M. Nucleus formation in supersaturated systems[J]. Z Phys Chem, 1926, 119: 277-301.
[44] [44] HLAND W, BEALL G H. Glass-ceramic technology[M]. New Jersey: John Wiley & Sons, 2019.
[45] [45] STOOKEY S D. Catalyzed crystallization of glass in theory and practice[J]. Ind Eng Chem, 1959, 51(7): 805-808.
[46] [46] SCHMELZER J W P, GOKHMAN A R, FOKIN V M. Dynamics of first-order phase transitions in multicomponent systems: a new theoretical approach[J]. J Colloid Interface Sci, 2004, 272(1): 109-133.
[47] [47] LIU Q, TU H C, WANG X S, et al. Hydrated Na2O-B2O3-SiO2 glass prepared by colloid chemistry method[J]. J Non Cryst Solids, 2015, 425: 190-194.
[48] [48] ZHENG G J, LIU X F, WU J H, et al. Boosting continuous-wave laser-driven nonlinear photothermal white light generation by nanoscale porosity[J]. Adv Mater, 2022, 34(11): 2106368.
[50] [50] GLORIEUX B, SABOUNGI M L, MILLOT F, et al. Aerodynamic levitation: an approach to microgravity[J]. AIP Conf Proc, 2001, 552: 316-324.
[55] [55] BYKOV A B, SHARONOV M Y, PETRICEVIC V, et al. Synthesis and characterization of Cr4+-doped CaO-GeO2-Li2O-B2O3(Al2O3) transparent glass-ceramics[J]. J Non Cryst Solids, 2006, 352(52/54): 5508-5514.
[57] [57] HAO X J, HU X L, LUO Z W, et al. Preparation and properties of transparent cordierite-based glass-ceramics with high crystallinity[J]. Ceram Int, 2015, 41(10): 14130-14136.
[59] [59] WEN S F, WANG Y P, LAN B J, et al. Pressureless crystallization of glass for transparent nanoceramics[J]. Adv Sci, 2019, 6(17): 1901096.
[60] [60] DU G X, WEN S F, ZHAO J J, et al. Hybridization engineering of oxyfluoride aluminosilicate glass for construction of dual-phase optical ceramics[J]. Adv Mater, 2023, 35(11): 2370080.
[61] [61] HU T, NING L X, GAO Y, et al. Glass crystallization making red phosphor for high-power warm white lighting[J]. Light Sci Appl, 2021, 10(1): 56.
[62] [62] KONG L B, HUANG Y Z, QUE W X, et al. Transparent ceramic materials[M]. Switzerland: Springer Cham, 2015: 29-91.
[63] [63] ROSENFLANZ A, FREY M, ENDRES B, et al. Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides[J]. Nature, 2004, 430(7001): 761-764.
[64] [64] PRICE D L. High-temperature levitated materials[M]. Cambridge, UK: Cambridge University Press, 2010.
[65] [65] RICHARD WEBER J K, FELTEN J J, CHO B, et al. Glass fibres of pure and erbium- or neodymium-doped yttria-alumina compositions[J]. Nature, 1998, 393(6687): 769-771.
[66] [66] KOHARA S, SUZUYA K, TAKEUCHI K, et al. Glass formation at the limit of insufficient network formers[J]. Science, 2004, 303(5664): 1649-1652.
[67] [67] MA X G, PENG Z J, LI J Q. Effect of Ta2 O5 substituting on thermal and optical properties of high refractive index La2O3-Nb2O5 glass system prepared by aerodynamic levitation method[J]. J Am Ceram Soc, 2015, 98(3): 770-773.
[68] [68] MAO Z Z, DUAN J, ZHENG X J, et al. Study on optical properties of La2O3-TiO2-Nb2O5 glasses prepared by containerless processing[J]. Ceram Int, 2015, 41: S51-S56.
[70] [70] YOSHIMOTO K, MASUNO A, UEDA M, et al. Low phonon energies and wideband optical windows of La2O3-Ga2O3 glasses prepared using an aerodynamic levitation technique[J]. Sci Rep, 2017, 7(1): 1-9.
[71] [71] ARAKI S, YOSHIMURA M. Transparent nano-composites ceramics by annealing of amorphous phase in the HfO2-Al2O3-GdAlO3 system[J]. Int J Appl Ceram Technol, 2004, 1(2): 155-160.
[72] [72] SUGIYAMA A, ARAKI S, SAKAMOTO N, et al. Fabrication of amorphous bulk and multi-phase ceramics by melting method in the HfO2-Al2O3-Gd2O3-Eu2O3 system[J]. J Electroceram, 2006, 17(1): 71-74.
[73] [73] BOYER M, CARRION A J F, ORY S, et al. Transparent polycrystalline SrREGa3O7 melilite ceramics: potential phosphors for tuneable solid state lighting[J]. J Mater Chem C, 2016, 4(15): 3238-3247.
[74] [74] IRIFUNE T, KAWAKAMI K, ARIMOTO T, et al. Pressure-induced nano-crystallization of silicate garnets from glass[J]. Nat Commun, 2016, 7(1): 1-7.
[75] [75] ZHANG R, LIN H, YU Y L, et al. A new-generation color converter for high-power white LED: transparent Ce3+: YAG phosphor-in-glass[J]. Laser Photonics Rev, 2014, 8(1): 158-164.
[76] [76] ZHOU T, HOU C, ZHANG L, et al. Efficient spectral regulation in Ce: Lu3(Al, Cr)5O12 and Ce:Lu3(Al, Cr)5O12/Ce:Y3Al5O12 transparent ceramics with high color rendering index for high-power whiteLEDs/LDs[J]. J Adv Ceram, 2021, 10(5): 1107-1118.
[80] [80] ZHENG G J, WU J H, XU Z S, et al. Luminescent properties of doped amorphous and polycrystalline Y3Al5O12-Al2O3[J]. J Am Ceram Soc, 2021, 104(7): 3139-3148.
[81] [81] ZHENG G J, XIAO W G, WU H J, et al. Far-red-emitting ceramics: near-unity and zero-thermal-quenching far-red-emitting composite ceramics via pressureless glass crystallization (laser photonics rev. 15(7)/2021)[J]. Laser Photon Rev, 2021, 15(7): 2170038.
[82] [82] ZHENG G J, XIAO W G, WU J H, et al. Glass-crystallized luminescence translucent ceramics toward high-performance broadband NIR LEDs[J]. Adv Sci, 2022, 9(8): 2105713.
[83] [83] AL SAGHIR K, CHENU S, VERON E, et al. Transparency through structural disorder: A new concept for innovative transparent ceramics[J]. Chem Mater, 2015, 27(2): 508-514.
Get Citation
Copy Citation Text
ZHENG Guojun, XIAO Wenge, QIU Jianrong. Recent Progress on Preparation of Transparent Ceramics via Glass Crystallization[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2478
Category:
Received: Mar. 15, 2023
Accepted: --
Published Online: Oct. 7, 2023
The Author Email: Guojun ZHENG (11930065@zju.edu.cn)
CSTR:32186.14.