Optical Communication Technology, Volume. 48, Issue 4, 1(2024)
Research progress of high repetition rate passive harmonic mode -locked fiber lasers
[1] [1] KELLER U. Recent developments in compact ultrafast lasers[J]. Nature,2003, 424: 831-838.
[2] [2] LI C H, BENEDICK A J, FENDEL P, et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s -1 [J]. Nature,2008, 452(7187): 610-612.
[3] [3] NEWBURY N R. Searching for applications with a fine-tooth comb [J]. Nature Photonics, 2011, 5(4): 186-188.
[5] [5] NELSON L E, JONES D J, TAMURA K, et al. Ultrashort-pulse fiber ring lasers [J]. Applied Physics B, 1997, 65: 277-294.
[6] [6] TANG D Y, ZHAO L M, ZHAO B, et al. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers [J]. Physical Review A, 2005, 72(4): 1-9.
[7] [7] LIU X M, PANG M. Revealing the buildup dynamics of harmonic modelocking states in ultrafast lasers [J]. Laser & Photonics Reviews, 2019, 13(9): 1-9.
[8] [8] ZHANG Z X, ZHAN L, YANG X X, et al. Passive harmonically mode locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz [J]. Laser Physics Letters, 2007, 4(8): 592-596.
[9] [9] GRAY S, GRUDININ A B, LOH W H, et al. Femtosecond harmonically mode-locked fiber laser with time jitter below 1 ps[J]. Optics Letters, 1995,20(2): 189-191.
[10] [10] KUTZ J N, COLLINGS B C, BERGMAN K, et al. Stabilized pulse spacing in soliton lasers due to gain depletion and recovery[J]. IEEE Journal of Quantum ElectronicS, 1998, 34(9): 1749-1757.
[11] [11] WANG Y, SET S Y, YAMASHITA S. Active mode-locking via pump modulation in a Tm-doped fiber laser [J]. APL Photonics, 2016, 1(7): 1-9.
[12] [12] KOROBKO D A, STOLIAROV D A, ITRIN P A, et al. Harmonic modelocking fiber ring laser with a pulse repetition rate up to 12 GHz [J]. Optics & Laser Technology, 2021, 133: 11-16.
[13] [13] WANG J L, WANG X L, LEI J J, et al. Recent advances in modelocked fiber lasers based on two-dimensional materials [J]. Nanophotonics, 2020, 9(8): 2315-2340.
[14] [14] LAU K Y, ZHENG J C, JIN C H, et al. Mono-elemental saturable absorber in near-infrared mode-locked fiber laser: A review[J]. Infrared Physics & Technology, 2022, 122: 1-6.
[15] [15] FENG L H, ZUO L, YANG A Y. Impacts of operational parameters on nonlinear polarization rotation-based passively mode-locked fiber laser [J]. Chinese Physics B, 2013, 22(2): 1-7.
[16] [16] TAMURA K, IPPEN E P, HAUS H A, et al. 77-fs pulse generation froma stretched-pulsemode-locked all-fiberring laser[J].OpticsLetters, 1993, 18(13): 1080-1082.
[17] [17] NAZEMOSADAT E, MAFI A. Nonlinear multimodal interference and saturable absorption using a short graded-index multimode optical fiber [J]. Journal of the Optical Society of America B, 2013, 30(5): 1357-1367.
[18] [18] RENNINGER W H, WISE F W. Optical solitons in graded-index mul-timode fibres [J]. Nature Communication, 2013, 4: 1-6.
[19] [19] HOFMANN P, MAFI A, JOLLIVET C, et al. Detailed investigation of mode-field adapters utilizing multimode-interference in graded index fibers [J]. Journal of Lightwave Technology, 2012, 30(14): 2289-2298.
[20] [20] SIDORENKO P, FU W, WRIGHT L G, et al. Self-seeded, multi-megawatt, Mamyshev oscillator [J]. Optics Letters, 2018, 43(11): 2672-2675.
[21] [21] SET S Y, YAGUCHI H, TANAKA Y, et al. Laser mode locking using a saturable absorber incorporating carbon nanotubes[J]. Journal of Lightwave Technology, 2004, 22(1): 51-56.
[22] [22] CHANG S J, JU H I, SANG H Y, et al. Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes[J].OpticsExpress, 2011, 19(20): 19775-19780.
[23] [23] KOO J, PARK J, LEE J, et al. Toward higher-order passive harmonic mode-locking of a soliton fiber laser[J]. Optics Express, 2012, 37(11): 1862-1864.
[24] [24] HUANG Q Q, ZOU C H, WANG T X, et al. Influence of average cavity dispersion and spectral bandwidth on passively harmonic mode locked L-band Er-doped fiber laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(4): 1-8.
[25] [25] WANG Y, LI J, ZHANG E, et al. Coexistence of noise-like pulse and high repetition rate harmonic mode-locking in a dual-wavelength modelocked Tm-doped fiber laser[J]. OpticsExpress, 2017, 25(15): 17192-17200.
[26] [26] HUANG J J, LIU X Y, LIN J Z, et al. Uni-and bidirectional soliton rainsin aNALMmode-locked Tm-doped fiberlaser [J]. Optics&LaserTechnology, 2024, 169: 1-5.
[27] [27] HUANG Q, DAI L, ROZHIN A, et al. Nonlinearity managed passively harmonic mode-locked Er-doped fiber laser based on carbon nanotube film [J]. Optics Letters, 2021, 46(11): 2638-2641.
[28] [28] BONACCORSO F, SUN Z, HASAN T, et al. Graphene photonics and optoelectronics [J]. Nature Photonics, 2010, 4: 611-622.
[29] [29] SOBON G, SOTOR J, ABRAMSKI K M. Passive harmonic modelocking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz [J]. Applied Physics Letters, 2012, 100(16): 1-4.
[30] [30] LIU M, ZHENG X W, QI Y L, et al. Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser [J]. Optics Express, 2014, 22(19): 22841-22846.
[31] [31] YU H, ZHENG X, YIN K, et al. Thulium/holmium-doped fiber laser passively mode locked by black phosphorus nanoplatelets-based saturable absorber [J]. Applied Optics, 2015, 54(34): 10290-10294.
[32] [32] TIAN W, YU W, SHI J, et al. The property, preparation and application of topological insulators: a review [J]. Materials(Basel), 2017, 10(7): 1-45.
[33] [33] GANEEV R A, POPOV V S, ZVYAGIN A I, et al. Exfoliated Bi2Te3 nanoparticle suspensions and films: morphological and nonlinear optical characterization [J]. Nanophotonics, 2021, 10(15): 3857-3870.
[34] [34] HAJLAOUI M, PAPALAZAROU E, MAUCHAIN J, et al. Ultrafast surface carrier dynamics in the topological insulator Bi2Te3[J]. Nano Letters,2012, 12(7): 3532-3536.
[35] [35] LUO Z C, LIU M, LIU H, et al. 2 GHz passively harmonic modelockedfiber laser by a microfiber-based topological insulator saturableabsorber [J]. Optics Letters, 2013, 38(24): 5212-5215.
[36] [36] YAN P, LIN R, RUAN S, et al. A 2.95 GHz, femtosecond passiveharmonic mode-locked fiber laser based on evanescent field interactionwith topological insulator film [J]. Optics Express, 2015, 23(1): 154-164.
[37] [37] WANG Y J, SONG C Y, ZHANG H, et al. 119th harmonic modelockingin the fiber laser based on a novel saturable absorber thin filmobtained by the sol-gel method [J]. Optics & Laser Technology, 2022, 145:1-8.
[38] [38] MATSAS V J, NEWSON T P. Selfstarting passively mode-lockedfibre ring soliton laser exploiting nonlinear polarisation rotation [J]. ElectronicsLetters, 1992, 28(15): 1391-1393.
[39] [39] TAO S, XU L X, CHEN G L, et al. Ultra-high repetition rate harmonicmode-locking generated in a dispersion and nonlinearity managed fiberlaser [J]. Journal of Lightwave Technology, 2016, 34(9): 2354-2357.
[40] [40] KANG M S, JOLY N Y, RUSSELL P S J. Passive mode-locking offiberring laser at the 337th harmonic using gigahertz acoustic core resonances[J]. Optics Letters, 2013, 38(5): 561-563.
[41] [41] PANG M, JIANG X, HE W, et al. Stable subpicosecond soliton fiberlaser passively mode-locked by gigahertz acoustic resonance in photoniccrystal fiber core [J]. Optica, 2015, 2(4): 339-342.
[42] [42] HE W, PANG M, RUSSELL P S. Wideband-tunable soliton fiber lasermode-locked at 1.88 GHz by optoacoustic interactions in solid-core PCF [J]. Optics Express, 2015, 23(19): 24945-24954.
[43] [43] PANG M, HE W, RUSSELL P. Gigahertz-repetition-rate Tm-dopedfiber laser passively mode-locked by optoacoustic effects in nanobore photonic crystal fiber [J]. Optics Letters, 2016, 41(19): 4601-4604.
[44] [44] YEH D H, HE W, PANG M, et al. Pulse-repetition-rate tuning of a harmonicallymode-locked fiber laser using a tapered photonic crystal fiber [J].Optics Letters, 2019, 44(7): 1580-1583.
[45] [45] HUANG L, ZHANG Y, CUI Y, et al. Microfiber-assisted gigahertz harmonicmode-locking in ultrafast fiber laser [J]. Optics Letters, 2020, 45(17):4678-4681.
[46] [46] PU G Q, ZHANG L, HU W S, et al. Automatic mode-locking fiberlasers: progress and perspectives[J]. ScienceChina InformationSciences, 2020,63(6): 1-23.
[48] [48] WANG Z K, WANG D N, YANG F, et al. Er-doped mode-locked fiber laser with a hybrid structure of a step-index-graded-index multimode fiber as the saturable absorber[J].Journal of Lightwave Technology, 2017, 35(24):5280-5285.
[49] [49] LI H, WANG Z, LI C, et al. Mode-locked Tm fiber laser using SMFSIMF-GIMF-SMF fiber structure as a saturable absorber[J]. Optics Express, 2017, 25(22): 26546-26553.
[50] [50] WANG Z, WANG D N, YANG F, et al. Stretched graded-index multimode optical fiber as a saturable absorber for erbium-doped fiber laser mode locking [J]. Optics Letters, 2018, 43(9): 2078-2081.
[51] [51] TEGIN U, ORTAC B. All-fiber all-normal-dispersion femtosecond laser with a nonlinear multimodal interference-based saturable absorber [J].Optics Letters, 2018, 43(7): 1611-1614.
[52] [52] LUO Y, XIANG Y, SHUM P P, et al. Stationary and pulsating vector dissipative solitons in nonlinear multimode interference based fiber lasers[J]. Optics Express, 2020, 28(3): 4216-4224.
[53] [53] FU S, SHENG Q, ZHU X, et al. Passive Q-switching of an all-fiber laser induced by the Kerr effect of multimode interference [J]. Optics Express,2015, 23(13): 17255-17262.
[54] [54] YANG F, WANG D N, WANG Z K, et al. Saturable absorber based ona single mode fiber - graded index fiber-single mode fiber structure with innermicro-cavity [J]. Optics Express, 2018, 26(2): 927-934.
[55] [55] WANG T B, JIN L, ZHANG H W, et al. Gigahertz harmonic modelockedfiber laser based on tunable SMS ultrafast optical switch [J]. Annalender Physik, 2020, 532(5): 1-8.
[56] [56] WANG R Y, JIN L, WANG J Z, et al. Harmonic mode-locked fiberlaser based on microfiber-assisted nonlinear multimode interference [J].Chinese Optics Letters, 2022, 20(1): 1-5.
[57] [57] LI X H, JIN L, WANG R Y, et al. GHz-level all-fiber harmonic modelockedlaser based on microfiber-assisted nonlinear multimode interference[J]. Optics & Laser Technology, 2022, 155: 1-8.
[58] [58] PITOIS S, FINOT C, PROVOST L, et al. Generation of localized pulsesfrom incoherent wave in optical fiber lines made of concatened Mamyshevregenerators [J]. Journal of the Optical Society of America B, 2008, 25(9): 1537-1547.
[59] [59] ROCHETTE M, CHEN L R, SUN K, et al. Multiwavelength and tunableself-pulsating fiber cavity based on regenerative SPM Spectral Broadeningand Filtering [J]. IEEE Photonics Technology Letters, 2008, 20(17):1497-1499.
[61] [61] LIU Z, ZIEGLER Z M, WRIGHT L G, et al. Megawatt peak powerfrom a Mamyshev oscillator [J]. Optica, 2017, 4(6): 649-654.
[62] [62] ZELUDEVICIUS J, MICKUS M, REGELSKIS K. Investigation of differentconfigurations and operation regimes of fiber pulse generators basedon nonlinear spectral re-shaping [J]. Optics Express, 2018, 26(21): 27247-27264.
[63] [63] POEYDEBAT E, SCOL F, VANVINCQ O, et al. All-fiber Mamyshevoscillatorwithhighaverage power and harmonicmode-locking[J].OpticsLetters,2020, 45(6): 1395-1398.
[64] [64] PIECHAL B, SZCZEPANEK J, KARDAS T M, et al. Mamyshev oscillatorwith a widely tunable repetition rate [J]. Journal of Lightwave Technology,2021, 39(2): 574-581.
[65] [65] WANG T, REN B, LI C, et al. Over 80 nJ sub-100 fs all-fiber mamyshevoscillator[J]. IEEE Journal of Selected Topics in Quantum Electronics,2021, 27(6): 1-5.
[66] [66] SUI Y, JIN L, LIU Y K, et al. Harmonic mode-locking from erbiumdopedfiber self-starting mamyshev oscillator[J]. Journal of Lightwave Technology,2023, 42(5): 1-6.
Get Citation
Copy Citation Text
LYU Hongwei, LI Baolin, WEI Jiatian, LI Xiaohui, XING Yupeng, JIN Qi, YANG Wanli, XIE Baorong, YANG Xiaoliang. Research progress of high repetition rate passive harmonic mode -locked fiber lasers[J]. Optical Communication Technology, 2024, 48(4): 1
Category:
Received: Jan. 22, 2024
Accepted: --
Published Online: Oct. 11, 2024
The Author Email: