Journal of the Chinese Ceramic Society, Volume. 52, Issue 8, 2634(2024)

Crystallization Mechanism and Properties of Perovskite Nanocrystalline Embedded Chalcogenide Glass

FAN Peikuan1...2, ZHOU Gangjie1,2, KANG Shiliang1,2, and LIN Changgui12,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(33)

    [1] [1] TAN M J H, WANG Y, CHAN Y. Solution-based green amplified spontaneous emission from colloidal perovskite nanocrystals exhibiting high stability[J]. Appl Phys Lett, 2019, 114(18): 183101.

    [2] [2] AKKERMAN Q A, RAINò G, KOVALENKO M V, et al. Genesis,challenges and opportunities for colloidal lead halide perovskite nanocrystals[J]. Nat Mater, 2018, 17(5): 394–405.

    [3] [3] CHEN M, JU M G, GARCES H F, et al. Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation[J]. Nat Commun, 2019, 10(1): 16.

    [4] [4] NEDELCU G, PROTESESCU L, YAKUNIN S, et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I)[J]. Nano Lett, 2015, 15(8):5635–5640.

    [5] [5] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.Nanocrystals of cesium lead halide perovskites (CsPbX?, X = Cl, Br,and I): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett, 2015, 15(6): 3692–3696.

    [6] [6] RAJA S N, BEKENSTEIN Y, KOC M A, et al. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: Enhanced stability and polarization[J]. ACS Appl Mater Interfaces, 2016, 8(51):35523–35533.

    [7] [7] WANG Y N, HE J, CHEN H, et al. Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films[J]. Adv Mater,2016, 28(48): 10710–10717.

    [8] [8] ZHOU Q C, BAI Z L, LU W G, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Adv Mater,2016, 28(41): 9163–9168.

    [9] [9] LENG M Y, YANG Y, ZENG K, et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability[J]. Adv Funct Mater, 2018, 28(1): 1704446.

    [10] [10] YUAN S, CHEN D Q, LI X Y, et al. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing[J].ACS Appl Mater Interfaces, 2018, 10(22): 18918–18926.

    [11] [11] YE Y, ZHANG W C, ZHAO Z Y, et al. Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications[J]. Adv Opt Mater, 2019, 7(9): 1801663.

    [12] [12] HUANG X J, GUO Q Y, YANG D D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium[J].Nat Photon, 2020, 14: 82–88.

    [13] [13] LI B H, LONG R Y, XIA Y, et al. All-inorganic perovskite CsSnBr3 as a thermally stable, free-carrier semiconductor[J]. Angew Chem Int Ed Engl, 2018, 57(40): 13154–13158.

    [14] [14] JONG U G, YU C J, KYE Y H, et al. First-principles study on structural, electronic, and optical properties of inorganic Ge-based halide perovskites[J]. Inorg Chem, 2019, 58(7): 4134–4140.

    [15] [15] JELLICOE T C, RICHTER J M, GLASS H F J, et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals[J]. J Am Chem Soc, 2016, 138(9): 2941–2944.

    [16] [16] XING G C, KUMAR M H, CHONG W K, et al. Solution-processed tin-based perovskite for near-infrared lasing[J]. Adv Mater, 2016, 28(37): 8191–8196.

    [17] [17] CHEN J, LUO Z Y, FU Y P, et al. Tin(IV)-tolerant vapor-phase growth and photophysical properties of aligned cesium tin halide perovskite (CsSnX3; X = Br, I) nanowires[J]. ACS Energy Lett, 2019,4(5): 1045–1052.

    [18] [18] LIN C G, CHEN D, WENG K B, et al. Glassy flux protocol to confine lead-free CsSnX3 nanocrystals into transparent solid medium[J]. J Phys Chem Lett, 2020, 11(15): 6084–6089.

    [19] [19] WENG K B, LONG N B, JIAO Q, et al. A modified chalcogenide flux method for confining metal halide nanocrystals into transparent glassy matrix[J]. J Eur Ceram Soc, 2020, 40(15): 6037–6042.

    [20] [20] WANG J S, YU X L, LONG N B, et al. Spontaneous crystallization of PbCl2 nanocrystals in GeS2-Sb2S3 based chalcogenide glasses[J]. J Non Cryst Solids, 2019, 521: 119543.

    [21] [21] WENG K B, LONG N B, GUO Y Q, et al. Nanocrystallization of α-CsPbI3 perovskite nanocrystals in GeS2-Sb2S3 based chalcogenide glass[J]. J Eur Ceram Soc, 2020, 40(12): 4148–4152.

    [22] [22] GUO Y Q, KANG S L, XU Y, et al. Controllable crystallization of cesium halides in GeS2-Sb2S3 based chalcogenide glasses[J]. Ceram Int,2021, 47(8): 11474–11480.

    [23] [23] LONG N B, FU Y Q, XU T X, et al. Nanocrystallization and optical properties of CsPbBr3–I perovskites in chalcogenide glasses[J]. J Eur Ceram Soc, 2021, 41(8): 4584–4589.

    [24] [24] ZHANG X H, HONGLI M A, LUCAS J. A new class of infrared transmitting glass-ceramics based on controlled nucleation and growth of alkali halide in a sulphide based glass matrix[J]. J Non Cryst Solids,2004, 337(2): 130–135.

    [25] [25] ZHU S Z, MA H L, MATECKI M, et al. Controlled crystallization of GeS2-Sb2S3-CsCl glass for fabricating infrared transmitting glass-ceramics[J]. J Non Cryst Solids, 2005, 351(40/42): 3309–3313.

    [26] [26] LIU S J, LUO Y K, HE M L, et al. Novel CsPbI3 QDs glass with chemical stability and optical properties[J]. J Eur Ceram Soc, 2018,38(4): 1998–2004.

    [27] [27] CHEN D Q, YUAN S, CHEN J K, et al. Robust CsPbX3 (X = Cl, Br,and I) perovskite quantum dot embedded glasses: Nanocrystallization,improved stability and visible full-spectral tunable emissions[J]. J Mater Chem C, 2018, 6(47): 12864–12870.

    [28] [28] LONG N B, LIN C G, CHEN F F, et al. Nanocrystallization of lead-free Cs3Sb2Br9 perovskites in chalcogenide glass[J]. J Am Ceram Soc, 2020, 103(11): 6106–6111.

    [29] [29] YE Q L, WENG K B, GUAN S S, et al. Unveiling crystallization mechanism for controlling nanocrystalline structure in glasses[J]. J Eur Ceram Soc, 2020, 40(5): 2173–2178.

    [30] [30] LIN C G, DAI S X, LIU C, et al. Mechanism of the enhancement of mid-infrared emission from GeS2-Ga2S3 chalcogenide glass-ceramics doped with Tm3+[J]. Appl Phys Lett, 2012, 100(23): 231910.

    [31] [31] LU X S, LAI Z Q, REN J, et al. Distribution of Tm3+ and Ni2+ in chalcogenide glass ceramics containing Ga2S3 nanocrystals: Influence on photoluminescence properties[J]. J Eur Ceram Soc, 2019, 39(7):2580–2584.

    [32] [32] ZHANG X H, XU Y, SHEN Q H, et al. Enhancement of charge photo-generation and transport via an internal network of Sb2Se3/Cu2GeSe3 heterojunctions[J]. J Mater Chem A, 2014, 2(40):17099–17106.

    [33] [33] ZHAO X H, LONG N B, SUN X, et al. Relationship between composition, crystallization, and phase separation behavior of GeS2-Sb2S3-CsCl chalcogenide glasses[J]. Infrared Phys Technol, 2019,102: 102978.

    Tools

    Get Citation

    Copy Citation Text

    FAN Peikuan, ZHOU Gangjie, KANG Shiliang, LIN Changgui. Crystallization Mechanism and Properties of Perovskite Nanocrystalline Embedded Chalcogenide Glass[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2634

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 22, 2023

    Accepted: --

    Published Online: Dec. 4, 2024

    The Author Email: Changgui LIN (linchanggui@nbu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20230984

    Topics