Acta Photonica Sinica, Volume. 46, Issue 4, 410003(2017)

Fast Anomaly Detection Algorithm for Hyperspectral Imagery Based on Line-by-line Processing

FU Li-ting*... DENG He and LIU Chun-hong |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(18)

    [1] [1] HU Yan, WANG Hui-qin, MA Zong-fang, et al. Image fire detection based on independent component analysis and support vector machine[J]. Journal of Computer Applications, 2012, 32(3): 889-892.

    [3] [3] DU B, ZHANG Y, ZHANG L, et al. Beyond the sparsity-based target detector: a hybrid sparsity and statistics based detector for hyperspectral images[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5345-5357.

    [5] [5] ZHAO Chun-hui, LI Xiao-hui, WANG Yu-lei. Research advance on anomaly detection for hyperspectral imagery[J]. Journal of Electronic Measurement and Instrumentation, 2014, 28(8): 803-811.

    [7] [7] CHANG C I, WANG Y L, CHEN S Y. Anomaly detection using causal sliding windows[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3260-3270.

    [8] [8] REED I S, YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustic, Speech and Signal Process, 1990, 38(10): 1760-1770.

    [9] [9] CHANG C I, CHIANG S S. Anomaly detection and classification for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(2): 1314-1325.

    [11] [11] CHEN S Y, WANG Y L, WU C C, et al. Real-time causal processing of anomaly detection for hyperspectral imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1511-1534.

    [12] [12] ZHANG Y, DU B, ZHANG L, et al. A low-rank and sparse matrix decomposition-based mahalanobis distance method for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1376-1389.

    [13] [13] ZHAO Chun-hui, WANG Yu-lei, QI Bin, et al. Global and local real-time anomaly detectors for hyperspectral remote sensing imagery[J]. Remote Sensing, 2015, 7: 3966-3985.

    [14] [14] DU B, ZHANG L. A discriminative metric learning based anomaly detection method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 6844-6857.

    [15] [15] ZHAO Chun-hui, YOU Wei, QI Bin, et al. Real-time anomaly detection algorithm for hyperspectral remote sensing by using recursive polynomial kernal function[J]. Acta Optica Sinica, 2016, 36(2): s228002.

    [16] [16] WANG Y L, SCHULTZ R, CHEN S Y, et al. Progressive constrained energy minimization for subpixel detection[C]. SPIE, 2013, 8743: 874321.

    [17] [17] WANG J, CHANG C I. Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2601-2616.

    [18] [18] CHANG Y C, REN H, CHANG C I, et al. How to design synthetic images to validate and evaluate hyperspectral imaging algorithms[C]. Algorithms and Technologies for Multispectral,Hyperspectral,and Ultraspectral Imagery XIV, 2008, 6966: 69661P.

    Tools

    Get Citation

    Copy Citation Text

    FU Li-ting, DENG He, LIU Chun-hong. Fast Anomaly Detection Algorithm for Hyperspectral Imagery Based on Line-by-line Processing[J]. Acta Photonica Sinica, 2017, 46(4): 410003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Oct. 25, 2016

    Accepted: --

    Published Online: May. 3, 2017

    The Author Email: Li-ting FU (302691392@qq.com)

    DOI:10.3788/gzxb20174604.0410003

    Topics