Journal of Atmospheric and Environmental Optics, Volume. 18, Issue 3, 245(2023)
Estimation of PM2.5 concentration and analysis of influencing factors in China
Fig. 1. Random forest model inversion accuracy. (a) Train dataset; (b) test dataset
Fig. 2. Spatial distribution of original and estimated PM2.5 concentration on August 20, 2018. (a) Original value; (b) estimate value
Fig. 3. Seasonal model inversion accuracy on test dataset. (a) Spring model; (b) summer model;(c) autumn model; (d) winter model
Fig. 4. Area model inversion accuracy on test dataset. (a) Eastern model; (b) central model; (c) western model
Fig. 6. Three-dimensional spatial effect diagram of influence factors on changes of PM2.5 daily concentration. (a) AOD and BLH;(b) LAT and BLH; (c) BLH and TMP; (d) TMP and RH
|
|
|
|
|
Get Citation
Copy Citation Text
Yuan CAO, Mingyan GONG, Fei SHEN, Jinji MA, Guang YANG, Xiwen LIN. Estimation of PM2.5 concentration and analysis of influencing factors in China[J]. Journal of Atmospheric and Environmental Optics, 2023, 18(3): 245
Category:
Received: Nov. 15, 2021
Accepted: --
Published Online: Jun. 29, 2023
The Author Email: MA Jinji (jinjima@ahnu.edu.cn)