Journal of Innovative Optical Health Sciences, Volume. 7, Issue 2, 1350058(2014)
From identification of fluorescent flavoproteins to mitochondrial redox indicators in intact tissues
[1] [1] B. Chance, L. Ernster, P. B. Garland, C. P. Lee, P. A. Light, T. Ohnishi, C. I. Ragan, D. Wong, "Flavoproteins of the mitochondrial respiratory chain," Proc. Natl. Acad. Sci. USA 57, 1498–1505 (1967).
[2] [2] P. B. Garland, B. Chance, L. Ernster, C. P. Lee, D. Wong, "Flavoproteins of mitochondrial fatty acid oxidation," Proc. Natl. Acad. Sci. USA 58, 1696– 1702 (1967).
[3] [3] I. Hassinen, B. Chance, "Oxidation-reduction properties of the mitochondrial flavoprotein chain," Biochem. Biophys. Res. Commun. 31, 895–900 (1968).
[4] [4] H. Voltti, I. E. Hassinen, "Oxidation-reduction midpoint potentials of mitochondrial flavoproteins and their intramitochondrial localization," J. Bioenerg. Biomembr. 10, 45–58 (1978).
[5] [5] I. E. Hassinen, K. Hiltunen, "Respiratory control in isolated perfused rat heart. Role of the equilibrium relations between the mitochondrial electron carriers and the adenylate system," Biochim. Biophys. Acta 408, 319–330 (1975).
[6] [6] C. I. Ragan, P. B. Garland, "The intra-mitochondrial localization of flavoproteins previously assigned to the respiratory chain," Eur. J. Biochem. 10, 399–410 (1969).
[7] [7] R. Baradaran, J. M. Berrisford, G. S. Minhas, L. A. Sazanov, "Crystal structure of the entire respiratory complex I," Nature 494, 443–448 (2013).
[8] [8] R. Scholz, R. G. Thurman, J. R. Williamson, B. Chance, T. Bücher, "Flavin and pyridine nucleotide oxidation-reduction changes in perfused rat liver. I. Anoxia and subcellular localization of fluorescent flavoproteins," J. Biol. Chem. 244, 2317–2324 (1969).
[9] [9] H. Franke, C. H. Barlow, B. Chance, "Fluorescence of pyridine nucleotide and flavoproteins as an indicator of substrate oxidation and oxygen demand of the isolated perfused rat kidney," Int. J. Biochem. 12, 269–275 (1980).
[10] [10] A. Mayevsky, H. Kaplan, J. Haveri, J. Haselgrove, B. Chance, "Three-dimensional metabolic mapping of the freeze-trapped brain: Effects of ischemia in the mongolian gerbil," Brain Res. 367, 63–72 (1986).
[11] [11] H. N. Xu, S. Nioka, B. Chance, L. Z. Li, "Heterogeneity of mitochondrial redox state in premalignant pancreas in a PTEN null transgenic mouse model," Adv. Exp. Med. Biol. 701, 207–213 (2011).
[12] [12] I. Hassinen, R. H. Ylikahri, "Absorption spectrophotometry of perfused rat liver applied to fructoseinduced inhibition of respiration," Biochem. Biophys. Res. Commun. 38, 1091–1097 (1970).
[13] [13] K. Kiviluoma, I. Hassinen, "Role of acetaldehyde and acetate in the development of ethanol-induced cardiac lipidosis, studied in isolated perfused rat hearts," Alcohol Clin. Exp. Res. 7, 169–175 (1983).
[14] [14] I. E. Hassinen, "Reflectance spectrophotometric and surface fluorometric methods for measuring the redox state of nicotinamide nucleotides and flavins in intact tissues," Methods Enzymol. 123, 311–320 (1986).
[15] [15] E. M. Nuutinen, "Subcellular origin of the surface fluorescence of reduced nicotinamide nucleotides in the isolated perfused rat heart," Basic Res. Cardiol. 79, 49–58 (1984).
[16] [16] I. Hassinen, K. Ito, S. Nioka, B. Chance, "Mechanism of fatty acid effect on myocardial oxygen consumption. A phosphorus NMR study," Biochim. Biophys. Acta 1019, 73–80 (1990).
[17] [17] J. B. Chapman, "Fluorometric studies of oxidative metabolism in isolated papillary muscle of the rabbit," J. Gen. Physiol. 59, 135–154 (1972).
[18] [18] W. S. Kunz, W. Kunz, "Contribution of different enzymes to flavoprotein fluorescence of isolated rat liver mitochondria," Biochim. Biophys. Acta 841, 237–246 (1985).
[19] [19] W. S. Kunz, "Evaluation of electron-transfer flavoprotein and alpha-lipoamide dehydrogenase redox states by two-channel fluorimetry and its application to the investigation of beta-oxidation," Biochim. Biophys. Acta 932, 8–16 (1988).
[20] [20] W. S. Kunz, "Spectral properties of fluorescent flavoproteins of isolated rat liver mitochondria," FEBS Lett. 195, 92–96 (1986).
[21] [21] C. I. Ragan, P. B. Garland, "Spectroscopic studies of flavoproteins and non-haem iron proteins of submitochondrial particles of torulopsis utilis modified by iron- and sulphate-limited growth in continuous culture," Biochem. J. 124, 171–187 (1971).
[22] [22] K. H. Vuorinen, A. Ala-R mi, Y. Yan, P. Ingman, I. E. Hassinen, "Respiratory control in heart muscle during fatty acid oxidation. Energy state or substrate- level regulation by Ca2t " J. Mol. Cell. Cardiol. 27, 1581–1591 (1995).
[23] [23] A. Ala-R mi, M. Ylihautala, P. Ingman, I. E. Hassinen, "Influence of calcium-induced workload transitions and fatty acid supply on myocardial substrate selection," Metabolism 54, 410–420 (2005).
[24] [24] J. Koziol, "Fluorometric analyses of riboflavin and its coenzymes," Methods Enzymol. 18, 253–285 (1971).
[25] [25] A. de Kok, A. J. Visser, "Flavin binding site differences between lipoamide dehydrogenase and glutathione reductase as revealed by static and timeresolved flavin fluorescence," FEBS Lett. 218, 135– 138 (1987).
[26] [26] A. K. Lam, P. N. Silva, S. M. Altamentova, J. V. Rocheleau, "Quantitative imaging of electron transfer flavoprotein autofluorescence reveals the dynamics of lipid partitioning in living pancreatic islets," Integr. Biol. (Camb.) 4, 838–846 (2012).
[27] [27] T. Bücher, B. Brauser, A. Conze, F. Klein, O. Langguth, H. Sies, "State of oxidation-reduction and state of binding in the cytosolic NADH-system as disclosed by equilibration with extracellular lactate- pyruvate in hemoglobin-free perfused rat liver," Eur. J. Biochem. 27, 301–317 (1972).
[28] [28] J. R. Sparrow, E. Gregory-Roberts, K. Yamamoto, A. Blonska, S. K. Ghosh, K. Ueda, J. Zhou, "The bisretinoids of retinal pigment epithelium," Prog. Retin. Eye Res. 31, 121–135 (2012).
[29] [29] K. Arai, T. Kanaseki, S. Ohkuma, "Isolation of highly purified lysosomes from rat liver: Identifi- cation of electron carrier components on lysosomal membranes," J. Biochem. 110, 541–547 (1991).
[30] [30] H. J. Shin, J. L. Mego, "A rat liver lysosomal membrane flavin-adenine dinucleotide phosphohydrolase: Purification and characterization," Arch. Biochem. Biophys. 267, 95–103 (1988).
[31] [31] B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, "Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals," J. Biol. Chem. 254, 4764–4771 (1979).
[32] [32] B. Quistorff, B. Chance, "Simple techniques for freeze clamping and for cutting and milling of frozen tissue at low temperature for the purpose of two- or three-dimensional metabolic studies in vivo," Anal. Biochem. 108, 237–248 (1980).
[33] [33] B. Quistorff, H. Poulsen, "Evaluation of a freezeclamping technique designed for two- and threedimensional metabolic studies of rat liver in vivo. quenching efficiency and effect of clamping on tissue morphology," Anal. Biochem. 108, 249–256 (1980).
[34] [34] L. Z. Li, R. Zhou, T. Zhong, L. Moon, E. J. Kim, H. Qiao, S. Pickup, M. J. Hendrix, D. Leeper, B. Chance, J. D. Glickson, "Predicting melanoma metastatic potential by optical and magnetic resonance imaging," Adv. Exp. Med. Biol. 599, 67–78 (2007).
[35] [35] H. N. Xu, G. Zheng, J. Tchou, S. Nioka, L. Z. Li, "Characterizing the metabolic heterogeneity in human breast cancer xenografts by 3D high resolution fluorescence imaging," Springerplus 2, 73 (2013).
[36] [36] M. Mokry, P. Gal, B. Vidinsky, J. Kusnir, K. Dubayova, S. Mozes, J. Sabo, "In vivo monitoring the changes of interstitial pH and FAD/NADH ratio by fluorescence spectroscopy in healing skin wounds," Photochem. Photobiol. 82, 793–797 (2006).
[37] [37] M. C. Skala, A. Fontanella, L. Lan, J. A. Izatt, M. W. Dewhirst, "Longitudinal optical imaging of tumor metabolism and hemodynamics," J. Biomed. Opt. 15, 011112 (2010).
[38] [38] M. Minsky, "Memoir on inventing the confocal scanning microscope," Scanning 10, 128–138 (1988).
[39] [39] K. M. Berland, P. T. So, E. Gratton, "Two-photon fluorescence correlation spectroscopy: Method and application to the intracellular environment," Biophys. J. 68, 694–701 (1995).
[40] [40] A. V. Kuznetsov, J. Troppmair, R. Sucher, M. Hermann, V. Saks, R. Margreiter, "Mitochondrial subpopulations and heterogeneity revealed by confocal imaging: Possible physiological role " Biochim. Biophys. Acta 1757, 686–691 (2006).
[41] [41] F. Appaix, A. V. Kuznetsov, Y. Usson, L. Kay, T. Andrienko, J. Olivares, T. Kaambre, P. Sikk, R. Margreiter, V. Saks, "Possible role of cytoskeleton in intracellular arrangement and regulation of mitochondria," Exp. Physiol. 88, 175–190 (2003).
[42] [42] A. V. Kuznetsov, O. Mayboroda, D. Kunz, K. Winkler, W. Schubert, W. S. Kunz, "Functional imaging of mitochondria in saponin-permeabilized mice muscle fibers," J. Cell. Biol. 140, 1091–1099 (1998).
[43] [43] W. S. Kunz, K. Winkler, A. V. Kuznetsov, H. Lins, E. Kirches, C. W. Wallesch, "Detection of mitochondrial defects by laser fluorimetry," Mol. Cell. Biochem. 174, 97–100 (1997).
Get Citation
Copy Citation Text
Ilmo E. Hassinen. From identification of fluorescent flavoproteins to mitochondrial redox indicators in intact tissues[J]. Journal of Innovative Optical Health Sciences, 2014, 7(2): 1350058
Received: Jul. 30, 2013
Accepted: Sep. 17, 2013
Published Online: Jan. 10, 2019
The Author Email: Hassinen Ilmo E. (ilmo.hassinen@oulu.fi)