Journal of Electronic Science and Technology, Volume. 22, Issue 1, 100246(2024)
Machine learning model based on non-convex penalized huberized-SVM
[1] Roy A., Chakraborty S.. Support vector machine in structural reliability analysis: A review. Reliab. Eng. Syst. Safe., 233, 109126:1-12(2023).
[2] [2] M. Tanveer, T. Rajani, R. Rastogi, Y.H. Shao, M.A. Ganaie, Comprehensive review on twin suppt vect machines, Ann. Oper. Res. 310 (2) (Mar. 2022) 1–46.
[3] [3] S.L. Peng, W.W. Wang, Y.L. Chen, X.L. Zhong, Q.H. Hu, Regressionbased hyperparameter learning f suppt vect machines, IEEE T. Neur. . Lear. (Oct. 2023), doi: 10.1109TNNLS.2023.3321685.
[5] [5] V.N. Vapnik, The Nature of Statistical Learning They, Springer, New Yk, 1995.
[7] [7] J. Zhu, S. Rosset, T. Hastie, R. Tibshirani, 1nm suppt vect machines, in: Proc. of 16th Intl. Conf. on Neural Infmation Processing Systems, Whistler, 2003, pp. 49–56.
[8] Wegkamp M., Yuan M.. Support vector machines with a reject option. Bernoulli, 17, 1368-1385(2011).
[11] Meinshausen N., Yu B.. LASSO-type recovery of sparse representations for high-dimensional data. Ann. Stat., 37, 246-270(2009).
[12] Araveeporn A.. The higher-order of adaptive LASSO and elastic net methods for classification on high dimensional data. Mathematics, 9, 1091:1-14(2021).
[14] Zhang C.-H., Huang J.. The sparsity and bias of the LASSO selection in high-dimensional linear regression. Ann. Stat., 36, 1567-1594(2008).
[16] Zhang C.-H.. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat., 38, 894-942(2010).
[19] Rosset S., Zhu J.. Piecewise linear regularized solution paths. Ann. Stat., 35, 1012-1030(2007).
Get Citation
Copy Citation Text
Peng Wang, Ji Guo, Lin-Feng Li. Machine learning model based on non-convex penalized huberized-SVM[J]. Journal of Electronic Science and Technology, 2024, 22(1): 100246
Category:
Received: May. 21, 2023
Accepted: Mar. 15, 2024
Published Online: Jul. 5, 2024
The Author Email: Wang Peng (pwang@xzmu.edu.cn)