Acta Photonica Sinica, Volume. 32, Issue 2, 244(2003)
Modified Counter Propagation Network and Its Application to Multi-Sensor Target Recognition
[1] [1] Belur V D. Sensor Fusion 1996. Optical Engineering, 1996, 35(1): 601~602
[2] [2] Lawrence A K. Sensor and data fusion concepts and applications. SPIE Optical Engineering Press, Bellingham, Washington, USA, 1998. 231~245
[3] [3] Hecht-Nielsen R. Counterpropagation networks. Applied Optics, 1987, 26(12): 4979~4984
[4] [4] Hecht-Nielsen R. Applications of counterpropagation networks. Neural Networks, 1988, 1(1): 131~139
[5] [5] László K, Gábor T. Boundary region sensitive classification for the counter-propagation neural network. IEEE, 2000, 0-7695-0619-4/00: 90~94
[6] [6] Kohonen T. The self-organizing map. Proceedings of the IEEE, 1990, 78(9): 1464~1480
[7] [7] Thomopoulos, Dignet S C A. An unsupervised-learning clustering algorithm for clustering and data fusion. IEEE Transactions on AES, 1995, 31(1):21~38
[8] [8] Thierry D. A neural network classifier based on dempster-shafer theory. IEEE Transactions on SMC, 2000, 30(2):131~150
[9] [9] Fred S,Dan G. Ladar and Flir, based sensor fusion for automatic target classification. Proceedings of SPIE, 1988, 1003: 236~246
[10] [10] Niu L H. Ni G Q. CPN based multi-sensor fusion for target classification. Proceedings of SPIE, 2002, 4875: 671~676
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese]. Modified Counter Propagation Network and Its Application to Multi-Sensor Target Recognition[J]. Acta Photonica Sinica, 2003, 32(2): 244