Acta Photonica Sinica, Volume. 48, Issue 10, 1010002(2019)
L1-2 Spectral-spatial Total Variation Regularized Hyperspectral Image Denoising
[1] [1] JIA Zhi-cheng, XUE Yun-yan, CHEN Lei, et al. Blind separation algorithm for hyperspectral image based on the denoising reduction and the bat optimization[J]. Acta Photonica Sinica, 2016, 45(5): 0511001.
[2] [2] ZHANG Hong-yan, ZHANG Liang-pei. Spectral-spatial sparse subspace clustering for hyperspectral remote sensing images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 54(6): 3672-3684.
[3] [3] LIU Jia-min, ZHANG Li-mei, SHI Guang-yao, et al. Hyperspectral image classification with combination of sparse characteristic and neighborhood similarity metrics[J]. Acta Photonica Sinica, 2018, 47(6): 0610001.
[4] [4] ZHANG Hong-yan, HE Wei, ZHANG Liang-pei, et al. Hyperspectral image restoration using low-rank matrix recovery[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(8): 4729-4743.
[5] [5] CANDES E, LI X, MA Y, et al. Robust principal component analysis[J], Journal of the ACM. 2011, 58(3)11: 11:1-11: 37.
[6] [6] HE Wei, ZHANG Hong-yan, ZHANG Liang-pei, et al. Hyperspectral image denoising via noise-adjusted iterative low-rank matrix approximation[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015, 8(6): 3050-3061.
[7] [7] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.
[8] [8] LU Xiao-qiang, WANG Yu-long, YUAN Yuan. Graph-regularized low-rank representation for destriping of hyperspectral images[J]. IEEE Transaction-s on Geoscience & Remote Sensing, 2013, 51(7): 4009-4018.
[9] [9] ZHAO Qian, MENG De-yu, KONG Xu, et al. A novel sparsity measure for tensor recovery[C]. Proceedings of 2015 IEEE Conference on Computer Vision, 2015:271-279
[10] [10] HE Wei, ZHANG Hong-yan, ZHANG Liang-pei, et al. Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 54(1):178-188.
[11] [11] CHANG Yi, YAN Lu-xin, FANG Hou-zhang, et al. Anisotropic spectral-spatial total variation model for multispectral remote sensing image destriping[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 24(6): 1852-1866.
[12] [12] WANG Yao, PENG Jiang-jun, ZHAO Qian, et al. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition[J]. IEEE Transactions on Geoscience & Remote Sensing, 2018, 11(4):1227-1243.
[13] [13] YUAN Qiang-qiang, ZHANG Liang-pei, SHEN Huan-feng. Hyperspectral image denoising employing a spectral-spatial adaptive total variation model[J]. IEEE Transactions on Geoscience & Remote Sensing, 2012, 50(10): 3660-3677.
[14] [14] HE Wei, ZHANG Hong-yan, SHEN Huan-feng, et al. Hyperspectral image denoising using local low-rank matrix recovery and global spatial-spectral total variation[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2018, 11(3): 713-729.
[15] [15] XIE Xiao-zhen, XU Peng, PENG Zhen, et al. Hyperspectral image restoration with low-rank representation and mixture total variation regularization[J]. Journal of Image and Graphics, 2017, 22(11): 1592-1601.
[16] [16] MA Tian-hui, LOU Yi-fei, HUANG Ting-zhu. Truncated L1-L2 models for sparse recovery and rank minimization[J]. SIAM Journal on Imaging Scie-nces, 2017, 10(3): 1346-1380.
[17] [17] BIOUCAS-DIAS J, PLAZA A, DOBIGEON N, et al. Hyperspectral unmixing overview: geometrical, statistical and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2012, 5(2): 354-379.
[18] [18] RUDIN L, OSHERO S, FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physical D, 1992(60): 259-268.
[19] [19] GU Shu-hang, ZHANG Lei, ZUO Wang-meng, et al. Weighted nuclear norm minimization with application to image denoising[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), New York, 2014: 14632029.
[20] [20] LEFKIMMIATIS S, ROUSSOS A, MARAGOS P, et al. Structure tensor total variation[J]. SIAM Journal on Imaging Sciences, 2015, 8(2): 1090-1122.
[21] [21] LOU Yi-fei, ZENG Tian-yong, OSHER S, et al. A weighted difference of anisotropic and isotropic total variation for relaxed mumford-Shah image segmentation[J]. SIAM Journal on Imaging Sciences, 2015, 8(3): 1798-1823.
[22] [22] CAI Jian-feng, CANDES E, SHEN Zuo-wei. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982.
[23] [23] TAO P, AN L T H. Optimization algorithm for solving the trust-region sub-problem[J]. SIAM Journal on Optimization., 1998(8): 76-505.
[24] [24] WANG Zhou, BOVIK A, SHEIKH H, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Geoscience & Remote Sensing,2004, 13(4): 600-612.
[25] [25] YANG Jing-xiang, ZHAO Yong-qiang, YI Chen, et al. No-reference hyperspectral image quality assessment via quality sensitive features learning[J]. Remote Sensing, 2017, 9(4): 305.
Get Citation
Copy Citation Text
ZENG Hai-jin, JIANG Jia-wei, ZHAO Jia-jia, WANG Yi-zhuo, XIE Xiao-zhen. L1-2 Spectral-spatial Total Variation Regularized Hyperspectral Image Denoising[J]. Acta Photonica Sinica, 2019, 48(10): 1010002
Received: Jul. 15, 2019
Accepted: --
Published Online: Nov. 14, 2019
The Author Email: Hai-jin ZENG (zeng_navy@163.com)