Journal of the Chinese Ceramic Society, Volume. 52, Issue 5, 1608(2024)
Heavy Metal Poisoning Tolerance of Three-Dimensional Ordered Macroporous Denitration Catalyst
[2] [2] LI Guoliang. Shanxi Chem Ind, 2019, 39(5): 123-124.
[4] [4] ZHOU Tao, LIU Shaoguang, TANG Mingzao, et al. J Chin Ceram Soc, 2009, 37(2): 317-324.
[6] [6] WANG Luzhu, AN Jiakang, ZHANG Tao, et al. Chem Ind Eng Prog, 2023, 1-11.
[8] [8] SHI Xiaoyan, DING Shipeng, HE Hong, et al. Chin J Environ Eng, 2014, 8(5): 2031-2034.
[10] [10] ZOU Peng, XIONG Zhibo, HAN Kuihua, et al. Electr Power Technol Environ Prot, 2011, 27(5): 5-9.
[11] [11] ALI Z, LU Q, IQBAL T, et al. Poisoning Effects of P and Zn on Commercial NH3- SCR V2O5-MoO3/TiO2 Catalyst[J]. 2018, 4: 197-202.
[13] [13] ZHAO Hai, ZHANG Dexiang, GAO Jinsheng. Coal Convers, 2011, 34(4): 72-74.
[15] [15] ZHOU Chao, ZHAO Yang, XU Jia, et al. Chin Rare Earths, 2020, 41(5): 59-69.
[16] [16] PAPPAS D K, BONINGARI T, BOOLCHAND P, et al. Novel manganese oxide confined interweaved titania nanotubes for the low-temperature Selective Catalytic Reduction (SCR) of NOx by NH3[J]. J Catal, 2016, 334: 1-13.
[17] [17] FANG X E, LIU Y J, CHENG Y, et al. Mechanism of Ce-modified birnessite-MnO2 in promoting SO2 poisoning resistance for low-temperature NH3-SCR[J]. ACS Catal, 2021, 11(7): 4125-4135.
[19] [19] AN Zhiqiang. Studies on the preparation and performances of TiO2 supports[D]. Nanjing: Nanjing University of Technology, 2005.
[21] [21] WU Xitian. Study on preparation and modification of Mn-Ce-based SCR denitration catalyst[D].Dalian: Dalian Maritime University, 2021.
[23] [23] WANG Zhihua. Study on selective reduction of NOx by NH3 over composite catalysts[D]. Beijing: Beijing University of Chemical Technology, 2019.
[24] [24] LI H R, SCHILL L, FEHRMANN R, et al. Selective catalytic reduction of nitric oxide with a novel Mn-Ti-Ce oxide core-shell catalyst having improved low-temperature activity and water tolerance[J]. J Energy Inst, 2023, 109: 101266.
[25] [25] WU H L, LIU W Z, CAO J, et al. Mechanistic and performance insights into low-temperature NH3-SCR based on Ce-modified Mn-Ti catalysts[J]. J Environ Chem Eng, 2023, 11(3): 110072.
[26] [26] SONG J J, LIU S M, JI Y J, et al. Dual single-atom Ce-Ti/MnO2 catalyst enhances low-temperature NH3-SCR performance with high H2O and SO2 resistance[J]. Nano Res, 2023, 16(1): 299-308.
[27] [27] KONG M, ZHANG H D, WANG Y C, et al. Efficient MnOx-CeO2/Ti-bearing blast furnace slag catalyst for NH3-SCR of NO at low temperature: study of support treating and Mn/Ce ratio[J]. J Environ Chem Eng, 2022, 10(5): 108238.
[28] [28] YAN L J, WANG F L, WANG P L, et al. Unraveling the unexpected offset effects of Cd and SO2 deactivation over CeO2-WO3/TiO2 catalysts for NOx reduction[J]. Environ Sci Technol, 2020, 54(12): 7697-7705.
[29] [29] ALI Z, WU Y W, WU Y, et al. Inhibition effects of Pb species on the V2O5-MoO3/TiO2 catalyst for selective catalytic reduction of NOx with NH3: A DFT supported experimental study[J]. Appl Surf Sci, 2020, 525: 146582.
[30] [30] GUO R T, WANG Q S, PAN W G, et al. The poisoning effect of heavy metals doping on Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3[J]. J Mol Catal A Chem, 2015, 407: 1-7.
[31] [31] WANG L Y, REN Y, YU X H, et al. Novel preparation method, catalytic performance and reaction mechanisms of PrxMn1?xOδ/3DOM ZSM-5 catalysts for the simultaneous removal of soot and NOx[J]. J Catal, 2023, 417: 226-247.
[32] [32] JIANG Y, LIU T Y, GAO W Q, et al. Three-dimensionally ordered macroporous Ce-W-Nb oxide catalysts for selective catalytic reduction of NOx with NH3[J]. Chem Eng J, 2022, 433: 134576.
[33] [33] LIU X A, LIU H, LI D Y, et al. Activity test and mechanism study of 3DOM Ce0.8M0.1Zr0.1O2 (M=Cr, Sn, Fe, co, Ni, Mn, Cu) catalyst in the selective catalytic reduction of NO by CO[J]. ChemCatChem, 2021, 13(23): 4998-5011.
[34] [34] HU Y Q, DING S P, TAN C C, et al. Three-dimensionally ordered macroporous (3DOM) structure promoted the activity and H2O poisoning resistance of CeMn/3DOM-TiO2 catalyst in NH3-SCR[J]. J Rare Earths, 2023
[36] [36] SONG Liyun, DENG Shilin, ZHOU Yiyun, et al. Mater Rep, 2023, 37(6): 71-76.
[38] [38] YAN Zonglan, LUO Mengfei, XIE Guanqun, et al. Chin J Inorg Chem, 2005, 21(3): 425-428.
[39] [39] WANG M M, SU B X, REN S, et al. Different lead species deactivation on Mn-Ce activated carbon supported catalyst for low-temperature SCR of NO with NH3: comparison of PbCl2, Pb (NO3)2 and PbSO4[J]. J Colloid Interface Sci, 2022, 622: 549-561.
[40] [40] MAITARAD P, HAN J, ZHANG D S, et al. Structure-activity relationships of NiO on CeO2 nanorods for the selective catalytic reduction of NO with NH3: experimental and DFT studies[J]. J Phys Chem C, 2014, 118(18): 9612-9620.
[41] [41] LI P, XIN Y, LI Q, et al. Ce-Ti amorphous oxides for selective catalytic reduction of NO with NH3: Confirmation of Ce-O-Ti active sites[J]. Environ Sci Technol, 2012, 46(17): 9600-9605.
[42] [42] ESCH F, FABRIS S, ZHOU L, et al. Electron localization determines defect formation on ceria substrates[J]. Science, 2005, 309(5735): 752-755.
[43] [43] LIU X W, ZHOU K B, WANG L, et al. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J]. J Am Chem Soc, 2009, 131(9): 3140-3141.
[44] [44] ?OBAN ?ZKAN D, TüRK A, CELIK E. Synthesis and characterizations of LaMnO3 perovskite powders using sol-gel method[J]. J Mater Sci Mater Electron, 2021, 32(11): 15544-15562.
[46] [46] FANG Dingli, ZHANG Cheng, LI Juncheng, et al. J Fuel Chem Technol, 2024, 52(2): 195-205.
[47] [47] KALIAGUINE S, VAN NESTE A, SZABO V, et al. Perovskite-type oxides synthesized by reactive grinding[J]. Appl Catal A Gen, 2001, 209(1-2): 345-358.
[48] [48] LIU F Y, LI J Q, SOHN H Y, et al. Redox on Mn-Ce interface and its effects on low temperature selective catalytic reduction for NOx removal[J]. Fuel, 2023, 350: 128806.
[49] [49] WANG H Q, CHEN X B, GAO S, et al. Deactivation mechanism of Ce/TiO2 selective catalytic reduction catalysts by the loading of sodium and calcium salts[J]. Catal Sci Technol, 2013, 3(3): 715-722.
[50] [50] JIANG L J, LIU Q C, RAN G J, et al. V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO[J]. Chem Eng J, 2019, 370: 810-821.
[51] [51] SHEN B X, WANG Y Y, WANG F M, et al. The effect of Ce-Zr on NH3-SCR activity over MnOx(0.6)/Ce0.5Zr0.5O2 at low temperature[J]. Chem Eng J, 2014, 236: 171-180.
[52] [52] QU L, LI C T, ZENG G M, et al. Support modification for improving the performance of MnOx-CeOy/γ-Al2O3 in selective catalytic reduction of NO by NH3[J]. Chem Eng J, 2014, 242: 76-85.
[53] [53] TRAWCZY?SKI J, BIELAK B, MI?TA W. Oxidation of ethanol over supported manganese catalysts—effect of the carrier[J]. Appl Catal B Environ, 2005, 55(4): 277-285.
[54] [54] LENG X S, ZHANG Z P, LI Y S, et al. Excellent low temperature NH3-SCR activity over MnaCe0.3TiOx (a?=?0.1-0.3) oxides: influence of Mn addition[J]. Fuel Process Technol, 2018, 181: 33-43.
[55] [55] MA W P, JACOBS G, QIAN D L, et al. Fischer-Tropsch synthesis: Synergistic effect of hybrid Pt-Cd additives on a 15%Co/Al2O3 catalyst[J]. Appl Catal A Gen, 2020, 600: 117610.
[56] [56] LIU Z M, ZHANG S X, LI J H, et al. Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS[J]. Appl Catal B Environ, 2014, 144: 90-95.
[57] [57] LIU Z M, LIU Y X, CHEN B H, et al. Novel Fe-Ce-Ti catalyst with remarkable performance for the selective catalytic reduction of NOx by NH3[J]. Catal Sci Technol, 2016, 6(17): 6688-6696.
[58] [58] CHEN L, LI J H, GE M F, et al. Mechanism of selective catalytic reduction of NOx with NH3 over CeO2-WO3 catalysts[J]. Chin J Catal, 2011, 32(5): 836-841.
[59] [59] LIU Y E, GU T T, WENG X L, et al. DRIFT studies on the selectivity promotion mechanism of Ca-modified Ce-Mn/TiO2 catalysts for low-temperature NO reduction with NH3[J]. J Phys Chem C, 2012, 116(31): 16582-16592.
Get Citation
Copy Citation Text
TAN Chenchen, HAN Yuxuan, WU Peng, SHEN Kai, ZHUANG Ke, XU Yun, HU Yaqin, ZHANG Yaping. Heavy Metal Poisoning Tolerance of Three-Dimensional Ordered Macroporous Denitration Catalyst[J]. Journal of the Chinese Ceramic Society, 2024, 52(5): 1608
Category:
Received: Oct. 16, 2023
Accepted: --
Published Online: Aug. 20, 2024
The Author Email: Yaping ZHANG (amflora@seu.edu.cn)