Laser & Optoelectronics Progress, Volume. 60, Issue 9, 0930001(2023)

Quantitative Spectrometric Analysis Based on a Multi-Branch Atrous Convolutional Network

Guoxi Chen1,2, Yisen Liu2、*, Songbin Zhou2, and Lulu Zhao2
Author Affiliations
  • 1Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, Yunnan , China
  • 2Institute of Intelligent Manufacturing, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong , China
  • show less
    Figures & Tables(18)
    Spectral curve of one sample for each data set. (a) Tablets (Raman) data set; (b) soil (NIR) data set; (c) wines (NMR) data set
    Atrous convolutional layers with a kernel size of 3×1 and different atrous rates
    Architectures of proposed atrous convolutional networks. (a) ACCnet; (b) ACPnet
    Regression curves of tablets (Raman) data set obtained by ACPnet and contrast methods
    Regression curves of soil (NIR) data set obtained by ACPnet and contrast methods
    Regression curves of wines (NMR) data set obtained by ACPnet and contrast methods
    Regression results obtained by ACCnet with different atrous rates
    Regression results obtained by ACPnet with different atrous rates
    • Table 1. Detailed information of three data sets

      View table

      Table 1. Detailed information of three data sets

      Data setScanSample sizeFeature sizeTargetMeanRangeStandard deviation
      SoilNIR1081050Soil organic matter85.43%42.91%-95.85%10.82%
      TabletsRaman1203400Active substance7.38%5.12%-8.48%1.13%
      WinesNMR401500Ethanol12.84 g·L-111.19-14.54 g·L-10.78 g·L-1
    • Table 2. Detailed parameters for regular CNN, ACCnet, and ACPnet of tablets (Raman) data set

      View table

      Table 2. Detailed parameters for regular CNN, ACCnet, and ACPnet of tablets (Raman) data set

      CNNACCnetACPnet
      Avg-pooling13Avg-pooling13Avg-pooling13
      Conv1

      16×5

      PReLU

      Conv1

      Rate is 2

      16×5

      PReLU

      Conv1_1

      Rate is 1

      Conv1_2

      Rate is 2

      Conv1_3

      Rate is 5

      16×5

      PReLU

      Avg-pooling2_1Avg-pooling2_2Avg-pooling2_33
      Avg-pooling23Avg-pooling23Feature fusionSum
      Conv2

      16×5

      PReLU

      Conv2

      Rate is 2

      16×5

      PReLU

      Conv2_1

      Rate is 1

      Conv2_2

      Rate is 2

      Conv2_3

      Rate is 5

      16×5

      PReLU

      Avg-pooling3_1Avg-pooling3_2Avg-pooling3_33
      Avg-pooling33Avg-pooling33Feature fusionSum
      Conv3

      16×5

      PReLU

      Conv3

      Rate is 2

      16×5

      PReLU

      Conv3_1

      Rate is 1

      Conv3_2

      Rate is 2

      Conv3_3

      Rate is 5

      16×5

      PReLU

      Avg-pooling4_1Avg-pooling4_2Avg-pooling4_33
      Avg-pooling43Avg-pooling43Feature fusionSum
      Fully-connected32Fully-connected32Fully-connected32
    • Table 3. Detailed parameters for regular CNN, ACCnet, and ACPnet of soil (NIR) data set

      View table

      Table 3. Detailed parameters for regular CNN, ACCnet, and ACPnet of soil (NIR) data set

      CNNACCnetACPnet
      Conv1

      32×5

      PReLU

      Conv1

      Rate is 2

      32×5

      PReLU

      Conv1_1

      Rate is 1

      Conv1_2

      Rate is 2

      Conv1_3

      Rate is 5

      32×5

      PReLU

      Avg-pooling1_1Avg-pooling1_2Avg-pooling1_32
      Avg-pooling12Avg-pooling12Feature fusionSum
      Conv2

      32×5

      PReLU

      Conv2

      Rate is 2

      32×5

      PReLU

      Conv2_1

      Rate is 1

      Conv2_2

      Rate is 2

      Conv2_3

      Rate is 5

      32×5

      PReLU

      Avg-pooling2_1Avg-pooling2_2Avg-pooling2_32
      Avg-pooling22Avg-pooling22Feature fusionSum
      Conv3

      32×5

      PReLU

      Conv3

      Rate is 2

      32×5

      PReLU

      Conv3_1

      Rate is 1

      Conv3_2

      Rate is 2

      Conv3_3

      Rate is 5

      32×5

      PReLU

      Avg-pooling3_1Avg-pooling3_2Avg-pooling3_32
      Avg-pooling32Avg-pooling32Feature fusionSum
    • Table 4. Detailed parameters for regular CNN, ACCnet, and ACPnet of wines (NMR) data set

      View table

      Table 4. Detailed parameters for regular CNN, ACCnet, and ACPnet of wines (NMR) data set

      CNNACCnetACPnet
      Avg-pooling12Avg-pooling12Avg-pooling12
      Conv1

      4×5

      PReLU

      Conv1

      Rate is 2

      4×5

      PReLU

      Conv1_1

      Rate is 1

      Conv1_2

      Rate is 2

      Conv1_3

      Rate is 5

      4×5

      PReLU

      Avg-pooling2_1Avg-pooling2_2Avg-pooling2_33
      Avg-pooling23Avg-pooling23Feature fusionSum
      Conv2

      4×5

      PReLU

      Conv2

      Rate is 2

      4×5

      PReLU

      Conv2_1

      Rate is 1

      Conv2_2

      Rate is 2

      Conv2_3

      Rate is 5

      4×5

      PReLU

      Avg-pooling3_1Avg-pooling3_2Avg-pooling3_33
      Avg-pooling33Avg-pooling33Feature fusionSum
      Conv3

      4×5

      PReLU

      Conv3

      Rate is 2

      4×5

      PReLU

      Conv3_1

      Rate is 1

      Conv3_2

      Rate is 2

      Conv3_3

      Rate is 5

      4×5

      PReLU

      Avg-pooling4_1Avg-pooling4_2Avg-pooling4_32
      Avg-pooling42Avg-pooling42Feature fusionSum
    • Table 5. Regression results of ACPnet and contrast methods of tablets (Raman) data set

      View table

      Table 5. Regression results of ACPnet and contrast methods of tablets (Raman) data set

      MethodRMSEC /%RMSEP /%RMSECV /%R2RPD
      PLS0.30±0.020.53±0.100.59±0.140.75±0.082.15±0.38
      LS-SVM0.22±0.060.54±0.160.57±0.220.71±0.182.16±0.56
      CNN0.27±0.060.44±0.180.47±0.170.80±0.143.12±1.72
      ACCnet(rate is 2)0.29±0.040.43±0.160.45±0.160.80±0.182.99±1.17
      ACPnet(rate is 1/2/5)0.23±0.030.36±0.200.39±0.190.85±0.203.76±1.40
    • Table 6. Regression results of ACPnet and contrast methods of soil (NIR) data set

      View table

      Table 6. Regression results of ACPnet and contrast methods of soil (NIR) data set

      MethodRMSEC /%RMSEP /%RMSECV /%R2RPD
      PLS0.75±0.131.67±0.462.07±0.570.96±0.056.18±1.74
      LS-SVM0.24±0.131.66±0.712.10±0.780.95±0.055.99±2.33
      CNN1.06±0.091.78±0.392.16±0.440.95±0.045.85±2.26
      ACCnet(rate is 2)1.09±0.361.67±0.701.50±0.650.96±0.036.45±2.82
      ACPnet(rate is 1/2/5)0.42±0.221.27±0.331.34±0.340.98±0.028.26±3.10
    • Table 7. Regression results of ACPnet and contrast methods of wines (NMR) data set

      View table

      Table 7. Regression results of ACPnet and contrast methods of wines (NMR) data set

      MethodRMSEC /(g·L-1RMSEP /(g·L-1RMSECV /(g·L-1R2RPD
      PLS0.02±0.020.26±0.120.43±0.370.71±0.293.60±2.39
      LS-SVM0.02±0.030.29±0.090.44±0.300.70±0.252.52±0.09
      CNN0.18±0.030.26±0.110.25±0.150.68±0.403.38±2.11
      ACCnet(rate is 2)0.19±0.020.25±0.110.15±0.060.69±0.493.52±1.95
      ACPnet(rate is 1/2/5)0.11±0.010.21±0.090.14±0.060.74±0.394.27±2.86
    • Table 8. Regression results of tablets (Raman) data set obtained by extractor-regressor models

      View table

      Table 8. Regression results of tablets (Raman) data set obtained by extractor-regressor models

      RegressorFeature extractor
      CNNACPnet
      RMSECV /%R2RPDRMSECV /%R2RPD
      PLS0.44±0.190.80±0.173.07±1.320.38±0.210.83±0.203.52±1.45
      LS-SVM0.45±0.210.78±0.193.10±1.520.37±0.250.83±0.233.99±1.71
    • Table 9. Regression results of soil (NIR) data set obtained by extractor-regressor models

      View table

      Table 9. Regression results of soil (NIR) data set obtained by extractor-regressor models

      RegressorFeature extractor
      CNNACPnet
      RMSECV /%R2RPDRMSECV /%R2RPD
      PLS1.55±0.160.96±0.027.17±2.561.48±0.750.96±0.017.55±2.50
      LS-SVM1.53±0.620.96±0.026.82±1.621.43±0.560.97±0.017.34±1.96
    • Table 10. Regression results of wines (NMR) data set obtained by extractor-regressor models

      View table

      Table 10. Regression results of wines (NMR) data set obtained by extractor-regressor models

      RegressorFeature extractor
      CNNACPnet
      RMSECV /(g·L-1R2RPDRMSECV /(g·L-1R2RPD
      PLS0.25±0.130.63±0.543.67±1.920.22±0.070.79±0.163.82±2.39
      LS-SVM0.24±0.120.67±0.453.91±2.480.22±0.090.82±0.143.88±2.43
    Tools

    Get Citation

    Copy Citation Text

    Guoxi Chen, Yisen Liu, Songbin Zhou, Lulu Zhao. Quantitative Spectrometric Analysis Based on a Multi-Branch Atrous Convolutional Network[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0930001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Dec. 24, 2021

    Accepted: Mar. 3, 2022

    Published Online: May. 9, 2023

    The Author Email: Liu Yisen (ys.liu@giim.ac.cn)

    DOI:10.3788/LOP213339

    Topics