Journal of the Chinese Ceramic Society, Volume. 51, Issue 12, 3227(2023)

Recent Development on Materials with Selective Infrared Emission Characteristics for Advanced Applications

XU Jian... WAN Zixuan, ZHOU Guojun, XIAO Weiqiang, WU Jian and LIU Xiaofeng |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(61)

    [1] [1] HU J E, BANDYOPADHYAY S, LIU Y H, et al. A review on metasurface: From principle to smart metadevices[J]. Front Phys, 2021, 8: 586087.

    [2] [2] WALIA S, SHAH C M, GUTRUF P, et al. Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales[J]. Appl Phys Rev, 2015, 2(1): 011303.

    [3] [3] RAHMAN B M A, VIPHAVAKIT C, CHITAREE R, et al. Optical fiber, nanomaterial, and THz-metasurface-mediated nano-biosensors: A review[J]. Biosensors, 2022, 12(1): 42.

    [4] [4] ABDOLLAHRAMEZANI S, HEMMATYAR O, TAGHINEJAD M, et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency[J]. Nat Commun, 2022, 13(1): 1696.

    [5] [5] KIM J, JEON D, SEONG J, et al. Photonic encryption platform via dual-band vectorial metaholograms in the ultraviolet and visible[J]. ACS Nano, 2022, 16(3): 3546-3553.

    [6] [6] GUO Z W, JIANG H T, CHEN H. Zero-index and hyperbolic metacavities: Fundamentals and applications[J]. J Phys D: Appl Phys, 2022, 55(8): 083001.

    [7] [7] ZHENG Z P, ZHENG Y, LUO Y, et al. A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection[J]. Phys Chem Chem Phys, 2022, 24(4): 2527-2533.

    [8] [8] MA W, XU Y H, XIONG B, et al. Pushing the limits of functionality-multiplexing capability in metasurface design based on statistical machine learning[J]. Adv Mater, 2022, 34(16): e2110022.

    [9] [9] AHMED H, KIM H, ZHANG Y B, et al. Optical metasurfaces for generating and manipulating optical vortex beams[J]. Nanophotonics, 2022, 11(5): 941-956.

    [10] [10] MA F Y, HUANG Z, LIU C R, et al. Acoustic focusing and imaging via phononic crystal and acoustic metamaterials[J]. J Appl Phys, 2022, 131(1): 011103.

    [11] [11] WANG S M, KUANG F H, YAN Q Z, et al. Crystallization and infrared radiation properties of iron ion doped cordierite glass-ceramics[J]. J Alloys Compd, 2011, 509(6): 2819-2823.

    [15] [15] CHEN C J, CHEN D H. Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material[J]. Chem Eng J, 2012, 180: 337-342.

    [16] [16] HE M Z, NOLEN J R, NORDLANDER J, et al. Deterministic inverse design of Tamm plasmon thermal emitters with multi-resonant control[J]. Nat Mater, 2021, 20(12): 1663-1669.

    [17] [17] XU J, MANDAL J, RAMAN A P. Broadband directional control of thermal emission[J]. Science, 2021, 372(6540): 393-397.

    [18] [18] BARANOV D G, XIAO Y Z, NECHEPURENKO I A, et al. Nanophotonic engineering of far-field thermal emitters[J]. Nat Mater, 2019, 18(9): 920-930.

    [19] [19] WANG J, CHEN Y T, CHEN X, et al. Photothermal reshaping of gold nanoparticles in a plasmonic absorber[J]. Opt Express, 2011, 19(15): 14726-14734.

    [20] [20] LIU J, CHEN W, ZHENG J C, et al. Wide-angle polarization-independent ultra-broadband absorber from visible to infrared[J]. Nanomaterials, 2019, 10(1): 27.

    [21] [21] DYACHENKO P N, MOLESKY S, PETROV A Y, et al. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions[J]. Nat Commun, 2016, 7: 11809.

    [22] [22] LIBERAL I, ENGHETA N. Near-zero refractive index photonics[J]. Nat Photonics, 2017, 11(3): 149-158.

    [23] [23] NIU X X, HU X Y, CHU S S, et al. Epsilon-near-zero photonics: a new platform for integrated devices[J]. Adv Opt Mater, 2018, 6(10): 1701292.

    [24] [24] WU J Y, XIE Z T, SHA Y H, et al. Epsilon-near-zero photonics: infinite potentials[J]. Photon Res, 2021, 9(8): 1616.

    [25] [25] KINSEY N, DEVAULT C, BOLTASSEVA A, et al. Near-zero-index materials for photonics[J]. Nat Rev Mater, 2019, 4(12): 742-760.

    [26] [26] RESHEF O, DE LEON I, ALAM M Z, et al. Nonlinear optical effects in epsilon-near-zero media[J]. Nat Rev Mater, 2019, 4(8): 535-551.

    [27] [27] HARBECKE B, HEINZ B, GROSSE P. Optical properties of thin films and the Berreman effect[J]. Appl Phys A, 1985, 38(4): 263-267.

    [28] [28] YING Y B, MA B Z, YU J B, et al. Whole LWIR directional thermal emission based on ENZ thin films[J]. Laser Photonics Rev, 2022, 16(8): 2200018.

    [29] [29] AMY C, SEYF H R, STEINER M A, et al. Thermal energy grid storage using multi-junction photovoltaics[J]. Energy Environ Sci, 2019, 12(1): 334-343.

    [30] [30] SEYF H R, HENRY A. Thermophotovoltaics: a potential pathway to high efficiency concentrated solar power[J]. Energy Environ Sci, 2016, 9(8): 2654-2665.

    [31] [31] DATAS A, RAMOS A, MART A, et al. Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion[J]. Energy, 2016, 107: 542-549.

    [32] [32] LAPOTIN A, SCHULTE K L, STEINER M A, et al. Thermophotovoltaic efficiency of 40%[J]. Nature, 2022, 604(7905): 287-291.

    [33] [33] FAN D J, BURGER T, MCSHERRY S, et al. Near-perfect photon utilization in an air-bridge thermophotovoltaic cell[J]. Nature, 2020, 586(7828): 237-241.

    [34] [34] REPHAELI E, FAN S H. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit[J]. Opt Express, 2009, 17(17): 15145-15159.

    [35] [35] SAKAKIBARA R, STELMAKH V, CHAN W R, et al. Practical emitters for thermophotovoltaics: A review[J]. JPE, 2019, 9(3): 032713.

    [36] [36] PAPADAKIS G T, BUDDHIRAJU S, ZHAO Z X, et al. Broadening near-field emission for performance enhancement in thermophotovoltaics[J]. Nano Lett, 2020, 20(3): 1654-1661.

    [37] [37] KOLM H H. Solar-battery Power Source[R]. Quarterly Progress Report Solid State Research, Massachusetts, USA, 1956: 13-15.

    [38] [38] MCSHERRY S, WEBB M, KAUFMAN J, et al. Nanophotonic control of thermal emission under extreme temperatures in air[J]. Nat Nanotechnol, 2022, 17(10): 1104-1110.

    [39] [39] LIN Z H, LIU H Z, QIAO T, et al. Tamm plasmon enabled narrowband thermal emitter for solar thermophotovoltaics[J]. Sol Energy Mater Sol Cells, 2022, 238: 111589.

    [40] [40] YIN X B, YANG R G, TAN G, et al. Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source[J]. Science, 2020, 370(6518): 786-791.

    [41] [41] RAMAN A P, ANOMA M A, ZHU L X, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540-544.

    [42] [42] BIJARNIYA J P, SARKAR J, MAITI P. Review on passive daytime radiative cooling: Fundamentals, recent researches, challenges and opportunities[J]. Renew Sustain Energy Rev, 2020, 133: 110263.

    [43] [43] HOSSAIN M M, GU M. Radiative cooling: principles, progress, and potentials[J]. Adv Sci, 2016, 3(7): 1500360.

    [44] [44] ZHANG H W, LY K C S, LIU X H, et al. Biologically inspired flexible photonic films for efficient passive radiative cooling[J]. Proc Natl Acad Sci USA, 2020, 117(26): 14657-14666.

    [45] [45] ZHAI Y, MA Y G, DAVID S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329): 1062-1066.

    [46] [46] ZENG S N, PIAN S J, SU M Y, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 373(6555): 692-696.

    [47] [47] ZHANG X A, YU S J, XU B B, et al. Dynamic gating of infrared radiation in a textile[J]. Science, 2019, 363(6427): 619-623.

    [48] [48] WANG S C, JIANG T Y, MENG Y, et al. Scalable thermochromic smart windows with passive radiative cooling regulation[J]. Science, 2021, 374(6574): 1501-1504.

    [49] [49] YUAN J C, YIN H L, YUAN D, et al. On daytime radiative cooling using spectrally selective metamaterial based building envelopes[J]. Energy, 2022, 242: 122779.

    [50] [50] AMR M S, VLADIMIR M. S, MARK L B, Spatiotemporal light control with active metasurfaces[J]. Science, 2019, 364: 648.

    [51] [51] DU K K, LI Q, LYU Y B, et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST[J]. Light Sci Appl, 2017, 6(1): e16194.

    [52] [52] QU Y R, LI Q A, DU K K, et al. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST[J]. Laser Photonics Rev, 2017, 11(5): 1770052.

    [53] [53] MA B Z, HUANG Y, ZHA W Y, et al. Narrowband diffuse thermal emitter based on surface phonon polaritons[J]. Nanophotonics, 2022, 11(17): 4115-4122.

    [54] [54] CUI Y Y, KE Y J, LIU C, et al. Thermochromic VO2 for energy-efficient smart windows[J]. Joule, 2018, 2(9): 1707-1746.

    [55] [55] WEI H, GU J X, REN F F, et al. Smart materials for dynamic thermal radiation regulation[J]. Small, 2021, 17(35): 2100446.

    [56] [56] KO B, BADLOE T, RHO J. Vanadium dioxide for dynamically tunable photonics[J]. Chemnanomat, 2021, 7(7): 713-727.

    [57] [57] ZYLBERSZTEJN A, MOTT N F. Metal-insulator transition in vanadium dioxide[J]. Phys Rev B, 1975, 11(11): 4383-4395.

    [58] [58] TANG K C, DONG K C, LI J C, et al. Temperature-adaptive radiative coating for all-season household thermal regulation[J]. Science, 2021, 374(6574): 1504-1509.

    [59] [59] SINATKAS G, CHRISTOPOULOS T, TSILIPAKOS O, et al. Electro-optic modulation in integrated photonics[J]. J Appl Phys, 2021, 130(1): 10901.

    [60] [60] CAI G F, WANG J X, LEE P S. Next-generation multifunctional electrochromic devices[J]. Acc Chem Res, 2016, 49(8): 1469-1476.

    [61] [61] ZHAI Y L, LI J H, SHEN S, et al. Recent advances on dual-band electrochromic materials and devices[J]. Adv Funct Materials, 2022, 32(17): 2109848.

    [62] [62] CORRENTE G A, BENEDUCI A. Overview on the recent progress on electrofluorochromic materials and devices: A critical synopsis[J]. Adv Optical Mater, 2020, 8(20): 2000887.

    [63] [63] YAO Y, SHANKAR R, KATS M A, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators[J]. Nano Lett, 2014, 14(11): 6526-6532.

    [64] [64] HUANG Y W, LEE H W H, SOKHOYAN R, et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Lett, 2016, 16(9): 5319-5325.

    Tools

    Get Citation

    Copy Citation Text

    XU Jian, WAN Zixuan, ZHOU Guojun, XIAO Weiqiang, WU Jian, LIU Xiaofeng. Recent Development on Materials with Selective Infrared Emission Characteristics for Advanced Applications[J]. Journal of the Chinese Ceramic Society, 2023, 51(12): 3227

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 23, 2023

    Accepted: --

    Published Online: Jan. 19, 2024

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics