Journal of the Chinese Ceramic Society, Volume. 51, Issue 12, 3227(2023)
Recent Development on Materials with Selective Infrared Emission Characteristics for Advanced Applications
[1] [1] HU J E, BANDYOPADHYAY S, LIU Y H, et al. A review on metasurface: From principle to smart metadevices[J]. Front Phys, 2021, 8: 586087.
[2] [2] WALIA S, SHAH C M, GUTRUF P, et al. Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales[J]. Appl Phys Rev, 2015, 2(1): 011303.
[3] [3] RAHMAN B M A, VIPHAVAKIT C, CHITAREE R, et al. Optical fiber, nanomaterial, and THz-metasurface-mediated nano-biosensors: A review[J]. Biosensors, 2022, 12(1): 42.
[4] [4] ABDOLLAHRAMEZANI S, HEMMATYAR O, TAGHINEJAD M, et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency[J]. Nat Commun, 2022, 13(1): 1696.
[5] [5] KIM J, JEON D, SEONG J, et al. Photonic encryption platform via dual-band vectorial metaholograms in the ultraviolet and visible[J]. ACS Nano, 2022, 16(3): 3546-3553.
[6] [6] GUO Z W, JIANG H T, CHEN H. Zero-index and hyperbolic metacavities: Fundamentals and applications[J]. J Phys D: Appl Phys, 2022, 55(8): 083001.
[7] [7] ZHENG Z P, ZHENG Y, LUO Y, et al. A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection[J]. Phys Chem Chem Phys, 2022, 24(4): 2527-2533.
[8] [8] MA W, XU Y H, XIONG B, et al. Pushing the limits of functionality-multiplexing capability in metasurface design based on statistical machine learning[J]. Adv Mater, 2022, 34(16): e2110022.
[9] [9] AHMED H, KIM H, ZHANG Y B, et al. Optical metasurfaces for generating and manipulating optical vortex beams[J]. Nanophotonics, 2022, 11(5): 941-956.
[10] [10] MA F Y, HUANG Z, LIU C R, et al. Acoustic focusing and imaging via phononic crystal and acoustic metamaterials[J]. J Appl Phys, 2022, 131(1): 011103.
[11] [11] WANG S M, KUANG F H, YAN Q Z, et al. Crystallization and infrared radiation properties of iron ion doped cordierite glass-ceramics[J]. J Alloys Compd, 2011, 509(6): 2819-2823.
[15] [15] CHEN C J, CHEN D H. Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material[J]. Chem Eng J, 2012, 180: 337-342.
[16] [16] HE M Z, NOLEN J R, NORDLANDER J, et al. Deterministic inverse design of Tamm plasmon thermal emitters with multi-resonant control[J]. Nat Mater, 2021, 20(12): 1663-1669.
[17] [17] XU J, MANDAL J, RAMAN A P. Broadband directional control of thermal emission[J]. Science, 2021, 372(6540): 393-397.
[18] [18] BARANOV D G, XIAO Y Z, NECHEPURENKO I A, et al. Nanophotonic engineering of far-field thermal emitters[J]. Nat Mater, 2019, 18(9): 920-930.
[19] [19] WANG J, CHEN Y T, CHEN X, et al. Photothermal reshaping of gold nanoparticles in a plasmonic absorber[J]. Opt Express, 2011, 19(15): 14726-14734.
[20] [20] LIU J, CHEN W, ZHENG J C, et al. Wide-angle polarization-independent ultra-broadband absorber from visible to infrared[J]. Nanomaterials, 2019, 10(1): 27.
[21] [21] DYACHENKO P N, MOLESKY S, PETROV A Y, et al. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions[J]. Nat Commun, 2016, 7: 11809.
[22] [22] LIBERAL I, ENGHETA N. Near-zero refractive index photonics[J]. Nat Photonics, 2017, 11(3): 149-158.
[23] [23] NIU X X, HU X Y, CHU S S, et al. Epsilon-near-zero photonics: a new platform for integrated devices[J]. Adv Opt Mater, 2018, 6(10): 1701292.
[24] [24] WU J Y, XIE Z T, SHA Y H, et al. Epsilon-near-zero photonics: infinite potentials[J]. Photon Res, 2021, 9(8): 1616.
[25] [25] KINSEY N, DEVAULT C, BOLTASSEVA A, et al. Near-zero-index materials for photonics[J]. Nat Rev Mater, 2019, 4(12): 742-760.
[26] [26] RESHEF O, DE LEON I, ALAM M Z, et al. Nonlinear optical effects in epsilon-near-zero media[J]. Nat Rev Mater, 2019, 4(8): 535-551.
[27] [27] HARBECKE B, HEINZ B, GROSSE P. Optical properties of thin films and the Berreman effect[J]. Appl Phys A, 1985, 38(4): 263-267.
[28] [28] YING Y B, MA B Z, YU J B, et al. Whole LWIR directional thermal emission based on ENZ thin films[J]. Laser Photonics Rev, 2022, 16(8): 2200018.
[29] [29] AMY C, SEYF H R, STEINER M A, et al. Thermal energy grid storage using multi-junction photovoltaics[J]. Energy Environ Sci, 2019, 12(1): 334-343.
[30] [30] SEYF H R, HENRY A. Thermophotovoltaics: a potential pathway to high efficiency concentrated solar power[J]. Energy Environ Sci, 2016, 9(8): 2654-2665.
[31] [31] DATAS A, RAMOS A, MART A, et al. Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion[J]. Energy, 2016, 107: 542-549.
[32] [32] LAPOTIN A, SCHULTE K L, STEINER M A, et al. Thermophotovoltaic efficiency of 40%[J]. Nature, 2022, 604(7905): 287-291.
[33] [33] FAN D J, BURGER T, MCSHERRY S, et al. Near-perfect photon utilization in an air-bridge thermophotovoltaic cell[J]. Nature, 2020, 586(7828): 237-241.
[34] [34] REPHAELI E, FAN S H. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit[J]. Opt Express, 2009, 17(17): 15145-15159.
[35] [35] SAKAKIBARA R, STELMAKH V, CHAN W R, et al. Practical emitters for thermophotovoltaics: A review[J]. JPE, 2019, 9(3): 032713.
[36] [36] PAPADAKIS G T, BUDDHIRAJU S, ZHAO Z X, et al. Broadening near-field emission for performance enhancement in thermophotovoltaics[J]. Nano Lett, 2020, 20(3): 1654-1661.
[37] [37] KOLM H H. Solar-battery Power Source[R]. Quarterly Progress Report Solid State Research, Massachusetts, USA, 1956: 13-15.
[38] [38] MCSHERRY S, WEBB M, KAUFMAN J, et al. Nanophotonic control of thermal emission under extreme temperatures in air[J]. Nat Nanotechnol, 2022, 17(10): 1104-1110.
[39] [39] LIN Z H, LIU H Z, QIAO T, et al. Tamm plasmon enabled narrowband thermal emitter for solar thermophotovoltaics[J]. Sol Energy Mater Sol Cells, 2022, 238: 111589.
[40] [40] YIN X B, YANG R G, TAN G, et al. Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source[J]. Science, 2020, 370(6518): 786-791.
[41] [41] RAMAN A P, ANOMA M A, ZHU L X, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540-544.
[42] [42] BIJARNIYA J P, SARKAR J, MAITI P. Review on passive daytime radiative cooling: Fundamentals, recent researches, challenges and opportunities[J]. Renew Sustain Energy Rev, 2020, 133: 110263.
[43] [43] HOSSAIN M M, GU M. Radiative cooling: principles, progress, and potentials[J]. Adv Sci, 2016, 3(7): 1500360.
[44] [44] ZHANG H W, LY K C S, LIU X H, et al. Biologically inspired flexible photonic films for efficient passive radiative cooling[J]. Proc Natl Acad Sci USA, 2020, 117(26): 14657-14666.
[45] [45] ZHAI Y, MA Y G, DAVID S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329): 1062-1066.
[46] [46] ZENG S N, PIAN S J, SU M Y, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 373(6555): 692-696.
[47] [47] ZHANG X A, YU S J, XU B B, et al. Dynamic gating of infrared radiation in a textile[J]. Science, 2019, 363(6427): 619-623.
[48] [48] WANG S C, JIANG T Y, MENG Y, et al. Scalable thermochromic smart windows with passive radiative cooling regulation[J]. Science, 2021, 374(6574): 1501-1504.
[49] [49] YUAN J C, YIN H L, YUAN D, et al. On daytime radiative cooling using spectrally selective metamaterial based building envelopes[J]. Energy, 2022, 242: 122779.
[50] [50] AMR M S, VLADIMIR M. S, MARK L B, Spatiotemporal light control with active metasurfaces[J]. Science, 2019, 364: 648.
[51] [51] DU K K, LI Q, LYU Y B, et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST[J]. Light Sci Appl, 2017, 6(1): e16194.
[52] [52] QU Y R, LI Q A, DU K K, et al. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST[J]. Laser Photonics Rev, 2017, 11(5): 1770052.
[53] [53] MA B Z, HUANG Y, ZHA W Y, et al. Narrowband diffuse thermal emitter based on surface phonon polaritons[J]. Nanophotonics, 2022, 11(17): 4115-4122.
[54] [54] CUI Y Y, KE Y J, LIU C, et al. Thermochromic VO2 for energy-efficient smart windows[J]. Joule, 2018, 2(9): 1707-1746.
[55] [55] WEI H, GU J X, REN F F, et al. Smart materials for dynamic thermal radiation regulation[J]. Small, 2021, 17(35): 2100446.
[56] [56] KO B, BADLOE T, RHO J. Vanadium dioxide for dynamically tunable photonics[J]. Chemnanomat, 2021, 7(7): 713-727.
[57] [57] ZYLBERSZTEJN A, MOTT N F. Metal-insulator transition in vanadium dioxide[J]. Phys Rev B, 1975, 11(11): 4383-4395.
[58] [58] TANG K C, DONG K C, LI J C, et al. Temperature-adaptive radiative coating for all-season household thermal regulation[J]. Science, 2021, 374(6574): 1504-1509.
[59] [59] SINATKAS G, CHRISTOPOULOS T, TSILIPAKOS O, et al. Electro-optic modulation in integrated photonics[J]. J Appl Phys, 2021, 130(1): 10901.
[60] [60] CAI G F, WANG J X, LEE P S. Next-generation multifunctional electrochromic devices[J]. Acc Chem Res, 2016, 49(8): 1469-1476.
[61] [61] ZHAI Y L, LI J H, SHEN S, et al. Recent advances on dual-band electrochromic materials and devices[J]. Adv Funct Materials, 2022, 32(17): 2109848.
[62] [62] CORRENTE G A, BENEDUCI A. Overview on the recent progress on electrofluorochromic materials and devices: A critical synopsis[J]. Adv Optical Mater, 2020, 8(20): 2000887.
[63] [63] YAO Y, SHANKAR R, KATS M A, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators[J]. Nano Lett, 2014, 14(11): 6526-6532.
[64] [64] HUANG Y W, LEE H W H, SOKHOYAN R, et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Lett, 2016, 16(9): 5319-5325.
Get Citation
Copy Citation Text
XU Jian, WAN Zixuan, ZHOU Guojun, XIAO Weiqiang, WU Jian, LIU Xiaofeng. Recent Development on Materials with Selective Infrared Emission Characteristics for Advanced Applications[J]. Journal of the Chinese Ceramic Society, 2023, 51(12): 3227
Received: May. 23, 2023
Accepted: --
Published Online: Jan. 19, 2024
The Author Email:
CSTR:32186.14.