Acta Photonica Sinica, Volume. 47, Issue 6, 630001(2018)
Laser-induced Plant Chlorophyll Fluorescence Lifetime and Spectral Properties Analysis
[1] [1] SAITO Y, TAKANO K, KOBAYASHI F, et al. Development of a UV laser-induced fluorescence lidar for monitoring blue-green algae in Lake Suwa[J]. Applied Optics, 2014, 53(30): 7030-7036.
[2] [2] KOTZAGIANNI M, COURIS S. Femtosecond laser induced breakdown spectroscopy of air-methane mixtures[J]. Chemical Physics Letters, 2013, 561: 36-41.
[3] [3] WITTE K, STREECK C, MANTOUVALOU J, et al. Magnesium K-Edge NEXAFS spectroscopy of chlorophyll alpha in solution[J]. Journal of Physical Chemistry B, 2016, 120(45): 11619-11627.
[4] [4] SMIS A, MURGUZUR F J A, STRUYF E, et al. Determination of plant silicon content with near infrared reflectance spectroscopy[J]. Frontiers in Plant Science, 2014, 5: 496.
[5] [5] CAMPOS-DELGADO D U, NAVARRO O G, ARCE-SANTANA E R, et al. Extended output phasor representation of multi-spectral fluorescence lifetime imaging microscopy[J]. Biomedical Optics Express, 2015, 6(6): 2088-2105.
[6] [6] NAJAFI M, ZAZUBOVICH V. Monte carlo modeling of spectral diffusion employing multiwell protein energy landscapes: application to pigment-protein complexes involved in photosynthesis[J]. Journal of Physical Chemistry B, 2015, 119(25): 7911-7921.
[7] [7] KUMAR A T N. Fluorescence lifetime detection in turbid media using spatial frequency domain filtering of time domain measurements[J]. Optics Letters, 2013, 38(9): 1440-1442.
[8] [8] ERGIN F G, WATZ B B, ERGLIS K, et al. Time-resolved velocity measurements in a magnetic micromixer[J]. Experimental Thermal and Fluid Science, 2015, 67: 6-13.
[9] [9] YEH Y C, YUAN C T, KANG C C, et al. Influences of light intensity on fluorescence lifetime of nanorods and quantum dots[J]. Applied Physics Letters, 2008, 93(22): 223110-223116.
[10] [10] DOBRANSZKI J, MENDLER-DRIENYOVSZKI N. Cytokinin-induced changes in the chlorophyll content and fluorescence of in vitro apple leaves[J]. Journal of Plant Physiology, 2014, 171(16): 1472-1478.
[11] [11] DUAN Jing-bo, LIU Wen-qing, ZHANG Yu-jun, et al. Study on the dark adaptation time of algaes strrssed by Cu2+ using chlorophyll fluorescence measurements[J]. Acta Photonica Sinica, 2014, 43(2): 0217002.
[12] [12] LEWIS N H C, FLEMING G R. Two-dimensional electronic-vibrational spectroscopy of chlorophyll a and b[J]. Journal of Physical Chemistry Letters, 2016, 7(5): 831-837.
[13] [13] EVA F, Martin K. Mean fluorescence lifetime and its error[J]. Journal of Luminescence, 2012, 132(8): 2059-2064.
[14] [14] CHAN J C K, DIEBOLD E D, BUCKLEY B W, et al. Digitally synthesized beat frequency-multiplexed fluorescence lifetime spectroscopy[J]. Biomedical Optics Express, 2014, 5(12): 4428-4436.
[15] [15] GRANUM E, PEREZ-BUENO M L, CALDERON C E, et al. Metabolic responses of avocado plants to stress induced by Rosellinia necatrix analysed by fluorescence and thermal imaging[J]. European Journal of Plant Pathology, 2015, 142(3): 625-632.
[16] [16] PTUSHENKO V V, PTUSHENKO O S, TIKHONOV A N. Chlorophyll fluorescence induction, chlorophyll content, and chromaticity characteristics of leaves as indicators of photosynthetic apparatus senescence in arboreous plants[J]. Biochemistry-Moscow, 2014, 79(3): 260-272.
Get Citation
Copy Citation Text
WAN Wen-bo, SU Jun-hong. Laser-induced Plant Chlorophyll Fluorescence Lifetime and Spectral Properties Analysis[J]. Acta Photonica Sinica, 2018, 47(6): 630001
Received: Dec. 8, 2017
Accepted: --
Published Online: Sep. 7, 2018
The Author Email: Wen-bo WAN (155216513@qq.com)