Journal of Inorganic Materials, Volume. 38, Issue 4, 406(2023)
As the basic and essential unit of neuromorphic computing system, artificial synaptic devices exhibit great potential in accelerating the high-performance parallel computation, artificial intelligence, and adaptive learning. Among them, electrolyte-gated synaptic transistors (EGSTs) have received increasing attention as the next generation neuromorphic devices owing to its controllable channel conductance. The devices exhibit the abilities of simulating the short-term plasticity (STP) and long-term plasticity (LTP) of the neural synapses. However, most of EGSTs exhibit short persistence for LTP and their channel conductance is difficult to be adjusted due to the rapid self-discharge of the electric double layer. In this work, the EGSTs based on water-induced In2O3 as the channel and chitosan as gate electrolyte were constructed and the O2 plasma treatments were performed. The formation of traps on the channel surface is caused by the O2 plasma treatments, which leads to capturing hydrogen ions at interface of the electrolyte/channel layer, and the device performance exhibits an enlarged hysteresis window, so as to regulate LTP of EGSTs. Biological synaptic functions, including excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), STP, and LTP, were mimicked by electrochemical doping and electrostatic coupling effects. Meanwhile, based on the experimentally verified potentiation/depression characteristics of the EGSTs, a three-layer artificial neural network is applied for handwritten digit recognition, and simulation tests can obtain high recognition accuracy of 94.7%. These results reveal that surface plasma treatment is one of the key technologies to affect the device performance, which has great potential in regulating synaptic function of EGSTs.
Get Citation
Copy Citation Text
Haiyang QIU, Guangtan MIAO, Hui LI, Qi LUAN, Guoxia LIU, Fukai SHAN.
Category:
Received: Nov. 14, 2022
Accepted: --
Published Online: Oct. 17, 2023
The Author Email: SHAN Fukai (fkshan@qdu.edu.cn)