Laser & Optoelectronics Progress, Volume. 60, Issue 20, 2015005(2023)

Improved YOLOv5-Based Defect Detection in Photovoltaic Modules

Lan Guo1,2,3 and Zhengxin Liu1,2,3、*
Author Affiliations
  • 1Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 2School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 3Research Center for Materials and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(26)

    [1] Xu M, Xie P, Xie B C. Study of China’s optimal solar photovoltaic power development path to 2050[J]. Resources Policy, 65, 101541(2020).

    [2] Ahmad J, Ciocia A, Fichera S et al. Detection of typical defects in silicon photovoltaic modules and application for plants with distributed MPPT configuration[J]. Energies, 12, 4547(2019).

    [3] Hernández-Callejo L, Gallardo-Saavedra S, Alonso-Gómez V. A review of photovoltaic systems: design, operation, and maintenance[J]. Solar Energy, 188, 426-440(2019).

    [4] Peinado Gonzalo A, Pliego Marugán A, García Márquez F P. A survey of maintenance management of photovoltaic power systems[J]. Renewable and Sustainable Energy Reviews, 134, 110347(2020).

    [5] Fuyuki T, Kitiyanan A. Photographic diagnosis of crystalline silicon solar cells utilising electroluminescence[J]. Applied Physics A, 96, 189-196(2009).

    [7] Fuyuki T, Tani A. Photographic diagnosis of crystalline silicon solar cells by electroluminescence[M], 159-162(2011).

    [8] Abdelhamid M, Singh R, Omar M. A review of microcracks detection techniques for silicon solar cells[J]. IEEE Journal of Photovoltaics, 4, 514-524(2014).

    [9] Dunderdale C, Brettenny W, Clohessy C et al. Photovoltaic defect classification through thermal infra-red imaging using a machine learning approach[J]. Progress in Photovoltaics: Research and Applications, 28, 177-188(2020).

    [10] Liu H G, Ding W C, Huang Q W et al. Research on the online defect detection method of solar cell components based on lightweight convolutional neural network[J]. The international Journal of Photoenergy, 2021, 7272928(2021).

    [11] Yahya Z, Imane S, Hicham H et al. Applied imagery pattern recognition for photovoltaic modules’ inspection: a review on methods, challenges, and future development[J]. Sustainable Energy Technologies and Assessments, 52, 102071(2022).

    [12] Bartler A, Mauch L, Yang B et al. Automated detection of solar cell defects with deep learning[C], 2035-2039(2018).

    [13] Deitsch S, Christlein V, Berger S et al. Automatic classification of defective photovoltaic module cells in electroluminescence images[J]. Solar Energy, 185, 455-468(2019).

    [14] Tang W Q, Yang Q, Xiong K et al. Deep learning -based automatic defect identification of the photovoltaic module using electroluminescence images[J]. Solar Energy, 201, 453-460(2020).

    [15] Su B Y, Chen H Y, Zhou Z. BAF-detector: an efficient CNN-based detector for photovoltaic cell defect detection[J]. IEEE Transactions on Industrial Electronics, 69, 3161-3171(2022).

    [16] Zhao Z Q, Zheng P, Xu S T et al. Object detection with deep learning: a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 30, 3212-3232(2019).

    [17] Alahmadi A N M, Rezk H. A robust single-sensor MPPT strategy for a shaded photovoltaic-battery system[J]. Computer Systems Science and Engineering, 37, 63-71(2021).

    [18] Hong F, Song J, Meng H et al. A novel framework for intelligent detection for module defects of PV plant combining the visible and infra-red images[J]. Solar Energy, 236, 406-416(2022).

    [19] Jin R, Niu Q. Automatic fabric defect detection based on an improved YOLOv5[J]. Mathematical Problems in Engineering, 2021, 7321394(2021).

    [20] Wang B W, Huang F. A lightweight deep network for defect detection of insert moulding based on X-ray imaging[J]. Sensors, 21, 5612(2021).

    [21] Wang H Q, Shang S Q, Wang D W et al. Plant disease detection and classification method based on the optimised lightweight YOLOv5 model[J]. Agriculture, 12, 931(2022).

    [22] Han K, Wang Y H, Tian Q et al. GhostNet: more features from cheap operations[C], 1577-1586(2020).

    [23] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C], 7132-7141(2018).

    [24] Tan M X, Pang R M, Le Q V. EfficientDet: scalable and efficient object detection[C], 10778-10787(2020).

    [25] Kontges M, Kurtz S, Packard C et al. A review of the failures of photovoltaic modules[J]. Report IEA-PVPS T13-01, 33-35(2014).

    [26] Deitsch S, Buerhop-Lutz C, Sovetkin E et al. Segmentation of photovoltaic module cells in uncalibrated electroluminescence images[J]. Machine Vision and Applications, 32, 84(2021).

    Tools

    Get Citation

    Copy Citation Text

    Lan Guo, Zhengxin Liu. Improved YOLOv5-Based Defect Detection in Photovoltaic Modules[J]. Laser & Optoelectronics Progress, 2023, 60(20): 2015005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Nov. 24, 2022

    Accepted: Dec. 22, 2022

    Published Online: Sep. 28, 2023

    The Author Email: Liu Zhengxin (z.x.liu@mail.sim.ac.cn)

    DOI:10.3788/LOP223155

    Topics