Optics and Precision Engineering, Volume. 32, Issue 2, 252(2024)

Multimodal medical image fusion method based on structural functional cross neural network

Jing DI, Wenqing GUO*, Li REN, Yan YANG, and Jing LIAN
Author Affiliations
  • School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou730070, China
  • show less
    Figures & Tables(20)
    General network framework diagram
    G-R Block network structure
    R-G Block network structure
    ECA-S attention mechanism module
    Flowchart of decomposition network
    Adaptive weight block
    Comparison of MRI-PET image fusion in "mild Alzheimer's disease".
    Comparison of MRI-SPECT image fusion of "metastatic bronchogenic carcinoma".
    Comparison of MRI-CT image fusion of "meningioma"
    "Person" multi-focus image fusion comparison
    Comparison of infrared and visible image fusion in three different scenes
    Four different network structures for ablation experiments
    Histogram of the mean values of 20 images of four different network structures for the ablation experiment
    Fusion results of two groups of ablation experiments
    • Table 1. Specific parameters of network model

      View table
      View in Article

      Table 1. Specific parameters of network model

      ModuleLayerkSPIO
      InputConv5×511132
      Conv13×3113232
      Conv23×3113232
      G-R BlockConv33×3113232
      Conv43×3113232
      Conv53×3116432
      Conv13×3113232
      Conv23×3113232
      R-G BlockConv33×3113232
      Conv43×3113232
      Conv53×3116432
      Output1Conv1×111641
      Conv11×1113364
      Conv23×3116464
      Conv31×1116416
      M-R BlocksConv43×3111616
      Conv51×111164
      Conv63×31144
      Conv71×111684
      Conv83×31144
      Output2Conv3×311201
    • Table 2. Objective evaluation indexes of MRI-PET image fusion in "mild Alzheimer's disease"

      View table
      View in Article

      Table 2. Objective evaluation indexes of MRI-PET image fusion in "mild Alzheimer's disease"

      AGENSFMIQAB/FCCTime
      MLEPF8.221 84.311 040.430 82.653 40.353 60.585 77.751 4
      NSST7.962 64.205 139.369 82.514 40.367 50.276 510.595 1
      LEGFF10.986 94.793 149.882 22.303 30.573 00.284 00.572 6
      MATR9.118 23.434 945.902 41.841 90.577 80.287 09.758 7
      CNP10.947 63.711 851.913 42.126 80.546 40.775 96.529 8
      SDNet11.150 95.189 249.373 42.552 60.519 70.610 40.047 0
      CFL11.023 03.991 752.121 82.444 40.574 20.586 334.727 1
      Ours12.763 05.590 258.207 92.683 60.580 50.783 70.116 6
    • Table 3. Objective evaluation indexes of MRI-SPECT image fusion in "metastatic bronchogenic carcinoma"

      View table
      View in Article

      Table 3. Objective evaluation indexes of MRI-SPECT image fusion in "metastatic bronchogenic carcinoma"

      AGENSFMIQAB/FCCTime
      MLEPF5.692 35.058 026.656 33.457 80.506 70.860 87.553 1
      NSST6.160 95.057 029.595 93.495 70.561 60.864 849.169 4
      LEGFF6.498 05.142 931.044 22.948 80.620 40.871 90.654 8
      MATR5.963 44.146 030.029 02.610 80.652 90.533 90.343 9
      CNP6.616 73.975 234.040 32.599 50.604 80.635 78.965 4
      SDNet7.868 75.337 536.571 32.708 80.531 20.787 50.046 5
      CFL6.492 44.442 032.997 02.948 10.621 50.840 828.659 7
      Ours8.476 55.748 242.331 23.188 50.603 50.877 50.236 5
    • Table 4. Objective evaluation indexes of "meningioma" MRI-CT image fusion

      View table
      View in Article

      Table 4. Objective evaluation indexes of "meningioma" MRI-CT image fusion

      AGENSFMIQAB/FCCTime
      MLEPF4.009 25.124 517.820 11.531 40.265 70.659 49.632 5
      NSST8.486 15.232 241.925 72.819 90.644 00.891 08.734 9
      LEGFF8.885 15.223 542.716 32.949 10.617 10.849 00.438 3
      MATR8.296 74.896 840.518 53.314 20.607 20.647 30.288 3
      CNP8.950 95.019 541.972 83.329 50.625 20.707 73.587 8
      SDNet8.201 14.772 638.926 93.113 40.549 80.899 30.040 0
      CFL8.320 04.545 040.693 33.038 70.580 20.799 014.614 2
      Ours8.578 45.248 041.987 23.339 90.564 50.905 20.224 0
    • Table 5. Objective evaluation index of multi-focus image fusion of "people"

      View table
      View in Article

      Table 5. Objective evaluation index of multi-focus image fusion of "people"

      AGENSFMIQAB/FCCTime
      LEGFF5.275 57.183 617.516 46.694 30.708 00.985 40.438 3
      CFL5.064 37.216 917.219 76.093 70.697 60.987 210.555 4
      LRD3.980 77.165 415.009 15.645 20.561 20.958 0193.902 3
      SDNet4.763 37.445 817.838 06.822 60.633 40.985 90.040 0
      DCPCNN3.939 37.154 716.524 97.057 90.684 40.976 411.689 1
      Ours5.931 67.496 617.694 07.485 80.719 10.987 90.612 8
    • Table 6. Objective evaluation index of infrared and visible image fusion in three different scenes

      View table
      View in Article

      Table 6. Objective evaluation index of infrared and visible image fusion in three different scenes

      ImageMethodAGENSFMIQAB/FCCTime
      LEGFF5.019 15.743 112.305 51.788 40.464 50.782 50.704 7
      CFL1.916 95.604 35.842 82.490 50.417 40.429 015.712 8
      helicopterCCF3.469 75.625 78.412 12.678 20.460 50.452 72.752 6
      SMVIF3.205 55.024 27.829 21.796 40.510 10.753 56.923 1
      ResNet1.792 54.859 44.502 12.114 70.397 70.783 311.689 1
      Ours5.634 86.359 315.662 61.870 90.299 60.914 40.195 6
      LEGFF6.899 56.372 118.459 51.811 30.441 00.487 90.446 8
      CFL6.812 74.860 515.291 82.143 50.414 40.668 317.998 4
      Nato campCCF5.470 96.793 416.148 12.161 90.423 30.651 531.268 2
      SMVIF6.330 85.278 215.644 21.523 50.425 20.516 66.521 4
      ResNet6.250 53.286 89.928 91.622 60.345 10.517 41.423 6
      Ours6.920 96.386 018.601 52.189 70.364 20.706 30.356 8
      LEGFF7.176 56.457 217.418 51.404 00.431 50.720 20.446 8
      CFL2.946 46.720 07.824 83.324 10.389 60.759 717.998 4
      Movie_18CCF5.063 26.771 412.318 63.087 20.453 40.762 431.268 2
      SMVIF4.576 15.654 110.878 41.281 40.448 80.691 86.521 4
      ResNet2.585 95.524 96.315 51.546 50.340 10.727 51.423 6
      Ours8.632 56.998 121.409 51.998 20.313 30.766 40.356 8
    Tools

    Get Citation

    Copy Citation Text

    Jing DI, Wenqing GUO, Li REN, Yan YANG, Jing LIAN. Multimodal medical image fusion method based on structural functional cross neural network[J]. Optics and Precision Engineering, 2024, 32(2): 252

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 5, 2023

    Accepted: --

    Published Online: Apr. 2, 2024

    The Author Email: GUO Wenqing (344385945@qq.com)

    DOI:10.37188/OPE.20243202.0252

    Topics