Journal of Terahertz Science and Electronic Information Technology , Volume. 21, Issue 9, 1086(2023)
Research progress of radar imaging based on Deep Learning
[1] [1] RUMELHART D E,MCCLELLAND J L,PDP Research Group. Parallel distributed processing:explorations in the microstructure of cognition[M]. Cambridge,Mass:MIT Press, 1986.
[2] [2] LECUN Y,BOSER B,DENKER J S,et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989,1(4):541-551. doi:10.1162/neco.1989.1.4.541.
[3] [3] LECUN Y,BOTTOU L,BENGIO Y,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324. doi:10.1109/5.726791.
[4] [4] HINTON G,DENG Li,YU Dong,et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012,29(6):82-97. doi:10.1109/MSP.2012.2205597.
[5] [5] YU Dong,SEIDE F,LI Gang. Conversational speech transcription using context-dependent deep neural networks[C]// Proceedings of the 29th International Coference on International Conference on Machine Learning. Edinburgh, Scotland: Omnipress, 2012: 1-2.
[6] [6] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6):84-90. doi:10.1145/3065386.
[7] [7] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lille, France: JMLR. org, 2015:448-456.
[8] [8] REN Shaoqing,HE Kaiming,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI. 2016. 2577031.
[10] [10] WAGNER S. Morphological component analysis in SAR images to improve the generalization of ATR systems[C]// 2015 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing(CoSeRa). Pisa, Italy:IEEE, 2015:46-50. doi:10.1109/CoSeRa.2015.7330261.
[14] [14] MASON E, YONEL B, YAZICI B. Deep learning for SAR image formation[J]. Proc. SPIE 10201, Algorithms for Synthetic Aperture Radar Imagery XXIV, 2017(10201):1020104. doi:10.1117/12.2267831.
[15] [15] GAO Jingkun,DENG Bin,QIN Yuliang,et al. Enhanced radar imaging using a complex-valued convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2019,16(1):35-39. doi:10.1109/LGRS.2018.2866567.
[16] [16] YANG Ting,SHI Hongyin,LANG Manyun,et al. ISAR imaging enhancement: exploiting deep convolutional neural network for signal reconstruction[J]. International Journal of Remote Sensing, 2020,41(24):9447-9468. doi: 10.1080/01431161.2020.1799449.
[19] [19] DAI Yongpeng, JIN Tian, LI Haoran, et al. Imaging enhancement via CNN in MIMO virtual array-based radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021,59(9):7449-7458. doi:10.1109/TGRS.2020.3035064.
[20] [20] HUANG Shaoyin,QIAN Jiang,WANG Yong,et al. Through-the-wall radar super-resolution imaging based on cascade U-net[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE, 2019: 2933-2936. doi:10.1109/IGARSS.2019.8900569.
[21] [21] DAI Yongpeng, JIN Tian, SONG Yongping, et al. CNN-based multiple-input multiple-output radar image enhancement method[J]. The Journal of Engineering, 2019, 2019(20): 6840-6844.
[22] [22] CHEN Shuo,LUO Chenggao,WANG Hongqiang,et al. Three-dimensional terahertz coded-aperture imaging based on matched filtering and convolutional neural network[J]. Sensors, 2018,18(5):1342. doi:10.3390/s18051342.
[23] [23] ZHANG Ye, YANG Qi, ZENG Yang, et al. High-quality interferometric inverse synthetic aperture radar imaging using deep convolutional networks[J]. Microwave and Optical Technology Letters, 2020,62(9):3060-3065.
[25] [25] MU Huilin,ZHANG Yun,DING Chang,et al. DeepImaging:a ground moving target imaging based on CNN for SAR-GMTI system[J]. IEEE Geoscience and Remote Sensing Letters, 2021,18(1):117-121. doi:10.1109/LGRS.2020.2967456.
[26] [26] CHEN Hang, YIN Junjun, YEH C, et al. Inverse synthetic aperture radar imaging based on time-frequency analysis through neural network[J]. Journal of Electronic Imaging, 2020,29(1):013003.
[27] [27] CHENG Qiao,IHALAGE A A,LIU Yujie,et al. Compressive sensing radar imaging with convolutional neural networks[J]. IEEE Access, 2020(8):212917-212926. doi:10.1109/ACCESS.2020.3040498.
[28] [28] HUANG Shaoyin,QIAN Jiang,WANG Yong,et al. ISAR maneuvering target imaging based on convolutional neural network[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE, 2019: 2551-2554. doi:10.1109/IGARSS.2019.8899052.
[29] [29] SUN Guanqun,ZHANG Fangzheng. Convolutional Neural Network(CNN)-based fast back projection imaging with noise-resistant capability[J]. IEEE Access, 2020(8):117080-117085. doi:10.1109/ACCESS.2020.3004860.
[30] [30] LU Zhijun, QIN Qi, SHI Hongyin, et al. SAR moving target imaging based on convolutional neural network[J]. Digital Signal Processing, 2020(106):102832. doi:10.1016/j.dsp.2020.102832.
[31] [31] SONG Shengli,CHEN Hang,LI Bo,et al. A stepped frequency modulated radar imaging method based on convolutional neural network[C]// 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar(APSAR). Xiamen, China: IEEE, 2019: 1-5. doi: 10.1109/APSAR46974.2019.9048526.
[32] [32] DONG Chao,LOY C C,HE Kaiming,et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,38(2):295-307. doi:10.1109/TPAMI.2015.2439281.
[34] [34] GUO Jiayi,LEI Bin,DING Chibiao,et al. Synthetic aperture radar image synthesis by using generative adversarial nets[J]. IEEE Geoscience and Remote Sensing Letters, 2017,14(7):1111-1115. doi:10.1109/LGRS.2017.2699196.
[36] [36] HORNIK K,STINCHCOMBE M,WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989,2(5):359-366.
[37] [37] HORNIK K,STINCHCOMBE M,WHITE H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks[J]. Neural Networks, 1990,3(5):551-560.
[38] [38] PU Wei. Deep SAR imaging and motion compensation[J]. IEEE Transactions on Image Processing, 2021(30):2232-2247. doi: 10.1109/TIP.2021.3051484.
[39] [39] GAO Xunzhang, QIN Dan, GAO Jingkun. Resolution enhancement for inverse synthetic aperture radar images using a deep residual network[J]. Microwave and Optical Technology Letters, 2020,62(4):1588-1593. doi:10.1002/mop.32186.
[40] [40] SHKVARKO Y, SANTOS S, TUXPAN J. Resolution-enhanced radar/SAR imaging: an experiment design framework combined with neural network-adapted variational analysis regularization[J]. EURASIP Journal on Advances in Signal Processing, 2011, 2011(1):85. doi:10.1186/1687-6180-2011-85.
[41] [41] HU Changyu,WANG Ling,LI Ze,et al. Inverse synthetic aperture radar imaging using a fully convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2020,17(7):1203-1207. doi:10.1109/LGRS.2019.2943069.
[42] [42] HU Changyu,WANG Ling,LI Ze,et al. Inverse synthetic aperture radar imaging using complex-value deep neural network[J]. The Journal of Engineering, 2019(20):7096-7099.
[43] [43] SHI Hongyin, ZHANG Jing, GAO Erfang, et al. Deep convolutional neural network for P-band spaceborne synthetic aperture radar imaging through the ionosphere[J]. Journal of Applied Remote Sensing, 2020,14(4):046507.
[44] [44] GUO Jianwen, SHI Hongyin, YANG Ting, et al. Ionospheric correction in P-band ISAR imaging based on polar formatting algorithm and convolutional neural network[J]. IET Radar, Sonar & Navigation, 2020, 14(7): 1098-1104. doi: 10.1049/iet-rsn.2019.0625.
[45] [45] WEI Shunjun,LIANG Jiadian,WANG Mou,et al. CIST:an improved ISAR imaging method using convolution neural network[J]. Remote Sensing, 2020,12(16):2461. doi:10.3390/rs12162641.
Get Citation
Copy Citation Text
LI Xiaofan, DENG Bin, LUO Chenggao, WANG Hongqiang, FAN Lei, FU Qiang. Research progress of radar imaging based on Deep Learning[J]. Journal of Terahertz Science and Electronic Information Technology , 2023, 21(9): 1086
Received: Jun. 15, 2021
Accepted: --
Published Online: Jan. 19, 2024
The Author Email: