Optics and Precision Engineering, Volume. 32, Issue 18, 2823(2024)

3D point cloud classification and segmentation based on dual attention and weighted dynamic graph convolution

Jian XIAO... Xiaohong WANG*, Wei LI, Yifei YANG and Ji LUO |Show fewer author(s)
Author Affiliations
  • School of Mining, Guizhou University, Guiyang550000, China
  • show less
    References(27)

    [1] H SU, S MAJI, E KALOGERAKIS et al. Multi-view convolutional neural networks for 3D shape recognition, 945-953(2015).

    [2] D MATURANA, S SCHERER. Voxnet: a 3D convolutional neural network for real-time object recognition, 922-928(2015).

    [3] G RIEGLER, A O ULUSOY, A GEIGER. OctNet: learning deep 3D representations at high resolutions, 6620-6629(2017).

    [4] P S WANG, Y LIU, Y X GUO et al. O-CNN. ACM Transactions on Graphics, 36, 1-11(2017).

    [5] R Q CHARLES, S HAO, K C MO et al. PointNet: deep learning on point sets for 3D classification and segmentation, 77-85(2017).

    [6] C R QI, L YI, H SU et al. Pointnet++: deep hierar-chical feature learning on point sets in a metric spa-ce. Advances in Neural Information Processing Systems, 30, 5099-5108(2017).

    [7] Y WANG, Y B SUN, Z W LIU et al. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics, 38, 1-12(2019).

    [8] Q Y HU, B YANG, L H XIE et al. RandLA-net: efficient semantic segmentation of large-scale point clouds, 11105-11114(2020).

    [9] H THOMAS, C R QI, J E DESCHAUD et al. KPConv: flexible and deformable convolution for point clouds, 6410-6419(2019).

    [10] [10] 杨军, 王连甲. 结合位置关系卷积与深度残差网络的三维点云识别与分割[J]. 西安交通大学学报, 2023, 57(5): 182-193.YANGJ, WANGL J. Recognition and segmentation of 3D point cloud through positional relation convolution in combination with deep residual network[J]. Journal of Xi'an Jiaotong University, 2023, 57(5): 182-193.(in Chinese)

    [11] H S ZHAO, L JIANG, C W FU et al. PointWeb: enhancing local neighborhood features for point cloud processing, 5560-5568(2019).

    [12] [12] 王江安, 何娇, 庞大为. 基于动态图卷积网络的点云分类和分割网络[J]. 激光与光电子学进展, 2021, 58(12): 1215008.WANGJ A, HEJ, PANGD W. Point cloud classification and segmentation network based on dynamic graph convolutional network[J]. Laser & Optoelectronics Progress, 2021, 58(12): 1215008.(in Chinese)

    [13] [13] 沈露, 杨家志, 周国清, 等. 集自注意力与边卷积的点云分类分割模型[J]. 计算机工程与应用, 2023, 59(19): 106-113.SHENL, YANGJ Z, ZHOUG Q, et al. Point cloud classification segmentation model based on self-attention and edge convolution[J]. Computer Engineering and Applications, 2023, 59(19): 106-113.(in Chinese)

    [14] [14] 杨军,李博赞. 基于自注意力特征融合组卷积神经网络的三维点云语义分割[J].光学 精密工程,2022,30(7):840-853. doi: 10.37188/OPE.20223007.0840YANGJ,LIB Z. Semantic segmentation of 3D point cloud based on self-attention feature fusion groupco-nvolutional neural network[J]. Opt. Precision Eng.,2022,30(7):840-853.(in Chinese). doi: 10.37188/OPE.20223007.0840

    [15] Y J CHEN, Z L YANG, X W ZHENG et al. Pointformer: a dual perception attention-based network for point cloud classification, 432-449(2023).

    [16] Z L YANG, Y J CHEN, X W ZHENG et al. Conditional GAN for point cloud generation, 117-133(2023).

    [17] J HU, L SHEN, G SUN. Squeeze-and-excitation Networks, 7132-7141(2018).

    [18] Z R WU, S R SONG, A KHOSLA et al. 3D ShapeNets: a deep representation for volumetric shapes, 1912-1920(2015).

    [19] L YI, V G KIM, D CEYLAN et al. A scalable active framework for region annotation in 3D shape collections. ACM Transactions on Graphics, 35, 1-12(2016).

    [20] [20] 兰红, 陈浩, 张蒲芬. 集图卷积和三维方向卷积的点云分类分割模型[J]. 计算机工程与应用, 2023, 59(8): 182-191. doi: 10.3778/j.issn.1002-8331.2112-0412LANH, CHENH, ZHANGP F. Point cloud classification and segmentation model based on graph convolution and 3D direction convolution[J]. Computer Engineering and Applications, 2023, 59(8): 182-191.(in Chinese). doi: 10.3778/j.issn.1002-8331.2112-0412

    [21] H S ZHAO, L JIANG, J Y JIA et al. Point transformer, 16239-16248(2021).

    [22] [22] 梁正友, 蔡俊民, 孙宇, 等. 结合残差动态图卷积与特征强化的点云分类[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 37-48.LIANGZ Y, CAIJ M, SUNY, et al. Point cloud classification based on residual dynamic graph convolution and feature enhancement[J]. Journal of Guangxi Normal University (Natural Science Edition), 2023, 41(5): 37-48.(in Chinese)

    [23] W X WU, Z A QI, F X LI. PointConv: deep convolutional networks on 3D point clouds, 9613-9622(2019).

    [24] X YAN, C D ZHENG, Z LI et al. PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling, 5588-5597(2020).

    [25] Y F XU, T Q FAN, M Y XU et al. SpiderCNN: deep learning on point sets with parameterized convolutional filters, 90-105(2018).

    [26] X F HAN, Y F JIN, H X CHENG et al. Dual transformer for point cloud analysis. IEEE Transactions on Multimedia, 25, 5638-5648(2022).

    [27] Z H LIN, S Y HUANG, Y C F WANG. Convolution in The Cloud: learning deformable kernels in 3D graph convolution networks for point cloud analysis, 1797-1806(2020).

    Tools

    Get Citation

    Copy Citation Text

    Jian XIAO, Xiaohong WANG, Wei LI, Yifei YANG, Ji LUO. 3D point cloud classification and segmentation based on dual attention and weighted dynamic graph convolution[J]. Optics and Precision Engineering, 2024, 32(18): 2823

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 25, 2024

    Accepted: --

    Published Online: Nov. 18, 2024

    The Author Email: WANG Xiaohong (xhwang@gzu.edu.cn)

    DOI:10.37188/OPE.20243218.2823

    Topics