Photonics Research, Volume. 10, Issue 8, 1859(2022)

Repetition rate locked single-soliton microcomb generation via rapid frequency sweep and sideband thermal compensation

Runlin Miao1,2,3, Chenxi Zhang1,2,3, Xin Zheng4, Xiang’ai Cheng1,2,3, Ke Yin1,5,6、*, and Tian Jiang1,5,7、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, China
  • 4Defense Innovation Institute, Academy of Military Sciences PLA China, Beijing 100071, China
  • 5Beijing Institute for Advanced Study, National University of Defense Technology, Beijing 100000, China
  • 6e-mail: cqyinke@126.com
  • 7e-mail: tjiang@nudt.edu.cn
  • show less
    References(48)

    [1] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [2] W. Wang, L. Wang, W. Zhang. Advances in soliton microcomb generation. Adv. Photonics, 2, 034001(2020).

    [3] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, T. J. Kippenberg. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2013).

    [4] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, C. Koos. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [5] Y. Geng, H. Zhou, X. Han, W. Cui, Q. Zhang, B. Liu, G. Deng, Q. Zhou, K. Qiu. Coherent optical communications using coherence-cloned Kerr soliton microcombs. Nat. Commun., 13, 1070(2022).

    [6] D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, S. B. Papp. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81-85(2018).

    [7] R. Niu, S. Wan, J. Li, R.-C. Zhao, C.-L. Zou, G.-C. Guo, C. Dong. Fast spectroscopy based on a modulated soliton microcomb. IEEE Photon. J., 13, 6801204(2021).

    [8] J. Zheng, Y. Wang, X. Wang, F. Zhang, W. Wang, X. Ma, J. Wang, J. Chen, L. Jia, M. Song, M. Yuan, B. Little, S. T. Chu, D. Cheng, X. Qu, W. Zhao, W. Zhang. Optical ranging system based on multiple pulse train interference using soliton microcomb. Appl. Phys. Lett., 118, 261106(2021).

    [9] T. Tetsumoto, F. Ayano, M. Yeo, J. Webber, T. Nagatsuma, A. Rolland. 300 GHz wave generation based on a Kerr microresonator frequency comb stabilized to a low noise microwave reference. Opt. Lett., 45, 4377-4380(2020).

    [10] J. Liu, E. Lucas, A. S. Raja, J. He, J. Riemensberger, R. N. Wang, M. Karpov, H. Guo, R. Bouchand, T. J. Kippenberg. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics, 14, 486-491(2020).

    [11] X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, D. G. Hicks, R. Morandotti, A. Mitchell, D. J. Moss. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021).

    [12] H. Weng, J. Liu, A. A. Afridi, J. Li, J. Dai, X. Ma, Y. Zhang, Q. Lu, J. F. Donegan, W. Guo. Directly accessing octave-spanning dissipative Kerr soliton frequency combs in an AlN microresonator. Photon. Res., 9, 1351-1357(2021).

    [13] M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, M. Loncar. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

    [14] X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, K. Vahala. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2, 1078-1085(2015).

    [15] J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, M. Lipson. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics, 4, 37-40(2009).

    [16] X. Wang, P. Xie, W. Wang, Y. Wang, Z. Lu, L. Wang, S. T. Chu, B. E. Little, W. Zhao, W. Zhang. Program-controlled single soliton microcomb source. Photon. Res., 9, 66-72(2020).

    [17] W. Xie, C. Xiang, L. Chang, W. Jin, J. Peters, J. E. Bowers. Silicon-integrated nonlinear III-V photonics. Photon. Res., 10, 535-541(2022).

    [18] S. Wan, R. Niu, J.-L. Peng, J. Li, G.-C. Guo, C.-L. Zou, C.-H. Dong. Fabrication of the high-Q Si3N4 microresonators for soliton microcombs. Chin. Opt. Lett., 20, 032201(2022).

    [19] S. Wan, R. Niu, Z.-Y. Wang, J.-L. Peng, M. Li, J. Li, G.-C. Guo, C.-L. Zou, C.-H. Dong. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators. Photon. Res., 8, 1342-1349(2020).

    [20] J. Ma, X. Jiang, M. Xiao. Kerr frequency combs in large-size, ultra-high-Q toroid microcavities with low repetition rates [Invited]. Photon. Res., 5, B54-B58(2017).

    [21] J. Ma, L. Xiao, J. Gu, H. Li, X. Cheng, G. He, X. Jiang, M. Xiao. Visible Kerr comb generation in a high-Q silica microdisk resonator with a large wedge angle. Photon. Res., 7, 573-578(2019).

    [22] L. Chang, W. Xie, H. Shu, Q. F. Yang, B. Shen, A. Boes, J. D. Peters, W. Jin, C. Xiang, S. Liu, G. Moille, S. P. Yu, X. Wang, K. Srinivasan, S. B. Papp, K. Vahala, J. E. Bowers. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun., 11, 1331(2020).

    [23] G. Moille, L. Chang, W. Xie, A. Rao, X. Lu, M. Davanço, J. E. Bowers, K. Srinivasan. Dissipative Kerr solitons in a III–V microresonator. Laser Photon. Rev., 14, 2000022(2020).

    [24] J. R. Stone, T. C. Briles, T. E. Drake, D. T. Spencer, D. R. Carlson, S. A. Diddams, S. B. Papp. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys. Rev. Lett., 121, 063902(2018).

    [25] V. Brasch, M. Geiselmann, M. H. Pfeiffer, T. J. Kippenberg. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express, 24, 29312-29320(2016).

    [26] H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, T. J. Kippenberg. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94-102(2016).

    [27] E. Obrzud, S. Lecomte, T. Herr. Temporal solitons in microresonators driven by optical pulses. Nat. Photonics, 11, 600-607(2017).

    [28] Y. Zhao, L. Chen, C. Zhang, W. Wang, H. Hu, R. Wang, X. Wang, S. T. Chu, B. Little, W. Zhang, X. Zhang. Soliton burst and bi‐directional switching in the platform with positive thermal‐refractive coefficient using an auxiliary laser. Laser Photon. Rev., 15, 2100264(2021).

    [29] H. Zhou, Y. Geng, W. Cui, S. W. Huang, Q. Zhou, K. Qiu, C. Wei Wong. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl., 8, 1(2019).

    [30] Z. Lu, W. Wang, W. Zhang, S. T. Chu, B. E. Little, M. Liu, L. Wang, C.-L. Zou, C.-H. Dong, B. Zhao, W. Zhao. Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator. AIP Adv., 9, 025314(2019).

    [31] S. Zhang, J. M. Silver, L. Del Bino, F. Copie, M. T. M. Woodley, G. N. Ghalanos, A. Ø. Svela, N. Moroney, P. Del’Haye. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica, 6, 206-212(2019).

    [32] C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, J. J. S. Riemensberger. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99-103(2021).

    [33] B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, M. Lipson. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [34] T. Wildi, V. Brasch, J. Liu, T. J. Kippenberg, T. Herr. Thermally stable access to microresonator solitons via slow pump modulation. Opt. Lett., 44, 4447-4450(2019).

    [35] F. Lei, Z. Ye, V. Torres-Company. Thermal noise reduction in soliton microcombs via laser self-cooling. Opt. Lett., 47, 513-516(2022).

    [36] K. Nishimoto, K. Minoshima, T. Yasui, N. Kuse. Thermal control of a Kerr microresonator soliton comb via an optical sideband. Opt. Lett., 47, 281-284(2022).

    [37] T. E. Drake, J. R. Stone, T. C. Briles, S. B. Papp. Thermal decoherence and laser cooling of Kerr microresonator solitons. Nat. Photonics, 14, 480-485(2020).

    [38] T. Tetsumoto, T. Nagatsuma, M. E. Fermann, G. Navickaite, M. Geiselmann, A. Rolland. Optically referenced 300  GHz millimetre-wave oscillator. Nat. Photonics, 15, 516-522(2021).

    [39] S. Zhang, J. M. Silver, X. Shang, L. Del Bino, N. M. Ridler, P. Del’Haye. Terahertz wave generation using a soliton microcomb. Opt. Express, 27, 35257-35266(2019).

    [40] B. Wang, J. S. Morgan, K. Sun, M. Jahanbozorgi, Z. Yang, M. Woodson, S. Estrella, A. Beling, X. Yi. Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons. Light Sci. Appl., 10, 4(2021).

    [41] Y. Okawachi, B. Y. Kim, Y. Zhao, J. K. Jang, X. Ji, M. Lipson, A. L. Gaeta. Active tuning of dispersive waves in Kerr soliton combs. Opt. Lett., 47, 2234-2237(2022).

    [42] A. Kordts, M. H. Pfeiffer, H. Guo, V. Brasch, T. J. Kippenberg. Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation. Opt. Lett., 41, 452-455(2016).

    [43] M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. Pfeiffer, M. Zervas, M. Geiselmann, T. J. Kippenberg. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Phys. Rev. Lett., 116, 103902(2016).

    [44] X. Yi, Q. F. Yang, X. Zhang, K. Y. Yang, X. Li, K. Vahala. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun., 8, 14869(2017).

    [45] Y. Nakajima, K. Minoshima. Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance measurement. Opt. Express, 23, 25979-25987(2015).

    [46] M. A. Tran, D. Huang, J. E. Bowers. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration. APL Photon., 4, 111101(2019).

    [47] S. Camatel, V. Ferrero. Narrow linewidth CW laser phase noise characterization methods for coherent transmission system applications. J. Lightwave Technol., 26, 3048-3055(2008).

    [48] D. Xu, B. Lu, F. Yang, D. Chen, H. Cai, R. Qu. Narrow linewidth single-frequency laser noise measurement based on a 3×3 fiber coupler. Chin. J. Lasers, 43, 0102004(2016).

    Tools

    Get Citation

    Copy Citation Text

    Runlin Miao, Chenxi Zhang, Xin Zheng, Xiang’ai Cheng, Ke Yin, Tian Jiang. Repetition rate locked single-soliton microcomb generation via rapid frequency sweep and sideband thermal compensation[J]. Photonics Research, 2022, 10(8): 1859

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Mar. 15, 2022

    Accepted: Jun. 12, 2022

    Published Online: Jul. 21, 2022

    The Author Email: Ke Yin (cqyinke@126.com), Tian Jiang (tjiang@nudt.edu.cn)

    DOI:10.1364/PRJ.458472

    Topics