Optics and Precision Engineering, Volume. 30, Issue 24, 3239(2022)
Deep convolutional generative adversarial network algorithm based on improved fisher's criterion
[1] [1] 1陈佛计, 朱枫, 吴清潇, 等. 生成对抗网络及其在图像生成中的应用研究综述[J]. 计算机学报, 2021, 44(2): 347-369. doi: 10.11897/SP.J.1016.2021.00347CHENF J, ZHUF, WUQ X, et al. A survey about image generation with generative adversarial nets[J]. Chinese Journal of Computers, 2021, 44(2): 347-369.(in Chinese). doi: 10.11897/SP.J.1016.2021.00347ge Generation with Generative Adversarial Nets[J]. Chinese Journal of Computers,2021, 44(02):347-369.(in Chinese). doi: 10.11897/SP.J.1016.2021.00347
[2] [2] 2汪美琴, 袁伟伟, 张继业. 生成对抗网络GAN的研究综述[J]. 计算机工程与设计, 2021, 42(12): 3389-3395.WANGM Q, YUANW W, ZHANGJ Y. Overview of research on generative adversarial network GAN[J]. Computer Engineering and Design, 2021, 42(12): 3389-3395.(in Chinese)
[3] I GOODFELLOW, J POUGET-ABADIE, M MIRZA et al. Generative adversarial nets. Advances in neural information processing systems, 27(2014).
[4] T HAILING, S ZONGTAN, Y YUAN et al. Analysis and insights from the MIT technology review “top 10 breakthrough technologies” in the past six years. Chinese Journal of Engineering Science, 19, 85(2017).
[5] S NOWOZIN, B CSEKE, R TOMIOKA. f-gan: Training generative neural samplers using variational divergence minimization. Advances in neural information processing systems, 29(2016).
[6] X D MAO, Q LI, H R XIE et al. Least squares generative adversarial networks, 2813-2821(2017).
[7] M ARJOVSKY, S CHINTALA, L BOTTOU. Wasserstein generative adversarial networks, 214-223(2017).
[8] Y MROUEH, T SERCU. Fisher gan. Advances in Neural Information Processing Systems, 30(2017).
[9] R D HJELM, A P JACOB, T CHE et al. Boundary-seeking generative adversarial networks. arXiv preprint arXi-v:1702, 2017(08431).
[10] A RADFORD, L METZ, S CHINTALA. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:, 2015.
[11] A MAKHZANI, J SHLENS, N JAITLY et al. Adversarial Autoe-ncoders. arXiv preprint arXiv:, 2015.
[12] A ODENA, C OLAH, J SHLENS. Conditional image synthesis with auxiliary classifier gans, 2642-2651(2017).
[13] [13] 13孙艳丰, 齐光磊, 胡永利, 等. 基于改进Fisher准则的深度卷积神经网络识别算法[J]. 北京工业大学学报, 2015, 41(6): 835-841.SUNY F, QIG L, HUY L, et al. Deep convolution neural network recognition algorithm based on improved fisher criterion[J]. Journal of Beijing University of Technology, 2015, 41(6): 835-841.(in Chinese)
[14] B XU, N WANG, T CHEN et al. Empirical evaluation of rectified activations in convolutional network. arXiv preprint(2015).
[15] [15] 15马永杰, 徐小冬, 张茹, 等. 生成式对抗网络及其在图像生成中的研究进展[J]. 计算机科学与探索, 2021, 15(10): 1795-1811.MAY J, XUX D, ZHANGR, et al. Generative adversarial network and its research progress in image generation[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1795-1811.(in Chinese)
[16] [16] 16胡铭菲, 左信, 刘建伟. 深度生成模型综述[J]. 自动化学报, 2022, 48(1): 40-74. doi: 10.16383/j.aas.c190866HUM F, ZUOX, LIUJ W. Survey on deep generative model[J]. Acta Automatica Sinica, 2022, 48(1): 40-74.(in Chinese). doi: 10.16383/j.aas.c190866
[17] M HEUSEL, H RAMSAUER, T UNTERTHINER et al. Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information proces-sing systems, 30(2017).
[18] [18] 18卢涛, 陈冲, 许若波, 等. 基于边缘增强生成对抗网络的人脸超分辨率重建[J]. 华中科技大学学报(自然科学版), 2020, 48(1): 87-92.LUT, CHENCH, XUR B, et al. Face hallucination based on edge enhanced generative adversarial network[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(1): 87-92.(in Chinese)
[19] [19] 19赵海英, 周伟, 侯小刚, 等. 多标签分类的传统民族服饰纹样图像语义理解[J]. 光学 精密工程, 2020, 28(3): 695-703. doi: 10.3788/OPE.20202803.0695ZHAOH Y, ZHOUW, HOUX G, et al. Multi-label classification of traditional national costume pattern image semantic understanding[J]. Opt. Precision Eng., 2020, 28(3): 695-703.(in Chinese). doi: 10.3788/OPE.20202803.0695
[20] [20] 20徐哲, 耿杰, 蒋雯, 等. 联合训练生成对抗网络的半监督分类方法[J]. 光学 精密工程, 2021, 29(5): 1127-1135. doi: 10.37188/OPE.20212905.1127XUZH, GENGJ, JIANGW, et al. Co-training generative adversarial networks for semi-supervised classification method[J]. Opt. Precision Eng., 2021, 29(5): 1127-1135.(in Chinese). doi: 10.37188/OPE.20212905.1127
[21] [21] 21郝帅, 吴瑛琦, 马旭, 等. 基于CycleGAN-SIFT的可见光和红外图像匹配[J]. 光学 精密工程, 2022, 30(5): 602-614. doi: 10.37188/OPE.20223005.0592HAOSH, WUY Q, MAX, et al. Visible and infrared image matching based on CycleGAN-SIFT[J]. Opt. Precision Eng., 2022, 30(5): 602-614.(in Chinese). doi: 10.37188/OPE.20223005.0592ge matching based on CycleGAN-SIFT[J].Optics and Pr-Engineeringecision,2022,30(5):602-614.(in Chinese). doi: 10.37188/OPE.20223005.0592
Get Citation
Copy Citation Text
Hao ZHANG, Guanglei QI, Xiaogang HOU, Kaimei ZHENG. Deep convolutional generative adversarial network algorithm based on improved fisher's criterion[J]. Optics and Precision Engineering, 2022, 30(24): 3239
Category: Information Sciences
Received: May. 18, 2022
Accepted: --
Published Online: Feb. 15, 2023
The Author Email: QI Guanglei (qiguanglei@ccbupt.cn)