Infrared and Laser Engineering, Volume. 51, Issue 6, 20220237(2022)

Research progress of single-frequency fiber laser technology (Invited)

Can Li, Pu Zhou*, Pengfei Ma, Man Jiang, Yue Tao, and Liu Liu
Author Affiliations
  • College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • show less
    References(117)

    [1] [1] Yang Z, Li C, Xu S, et al. SingleFrequency Fiber Lasers [M]Optical Fiber Communications Repts (OFCR, volume 8). Singape: Springer Nature Singape Pte Ltd., 2019.

    [2] S Fu, W Shi, Y Feng, et al. Review of recent progress on single-frequency fiber lasers. Journal of Optical Society of America B, 34, A49-A62(2017).

    [3] C Yang, X Cen, S Xu, et al. Research progress of single-frequency fiber laser. Acta Optica Sinica, 41, 0114002(2021).

    [4] P Ma, H Chang, Y Ma, et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array. Optics & Laser Technology, 140, 107016(2021).

    [5] N Bode, F Meylahn, B Willke. Sequential high power laser amplifiers for gravitational wave detection. Optics Express, 28, 29469-29478(2020).

    [6] V Vercesi, D Onori, F Laghezza, et al. Frequency-agile dual-frequency lidar for integrated coherent radar-lidar architectures. Optics Letters, 40, 1358-1361(2015).

    [7] Y Ma, X Wang, J Leng, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique. Optics Letters, 36, 951-953(2011).

    [8] Davide Castelvecchi. Gravitational-wave observatory LIGO set to double its detecting power. Nature, 566, 305(2019).

    [9] Z Li, H Duan, X Huang, et al. Design and performance test of the spaceborne laser in the TianQin-1 mission. Optics & Laser Technology, 141, 107155(2021).

    [10] J Wang, Y Hou, Q Zhang, et al. High-power, high signal-to-noise ratio single-frequency 1 µm Brillouin all-fiber laser. Optics Express, 23, 28978-28984(2015).

    [11] M Chen, Z Meng, J Wang, et al. Strong linewidth reduction by compact Brillouin/erbium fiber laser. IEEE Photonics Journal, 6, 1-8(2014).

    [12] C Shi, Q Sheng, S Fu, et al. Power scaling and spectral linewidth suppression of hybrid Brillouin/thulium fiber laser. Optics Express, 28, 2948-2955(2020).

    [13] J Gu, Y Yang, M Liu, et al. A switchable and stable single-longitudinal-mode, dual-wavelength erbium-doped fiber laser assisted by Rayleigh backscattering in tapered fiber. Journal of Applied Physics, 118, 103107(2015).

    [14] T Zhu, B Zhang, L Shi, et al. Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering. Optics Express, 24, 1324(2016).

    [15] H Shawki, H Kotb, A Khalil. Single-longitudinal-mode broadband tunable random laser. Optics Letters, 42, 3247(2017).

    [16] Q Wang, H Song, X Wang, et al. Experiments and analysis of tunable monolithic 1-m single-frequency fiber lasers with loop mirror filters. Optics Communications, 410, 884(2018).

    [17] K Wang, B Lu, X Qi, et al. Wavelength-tunable single-frequency ytterbium-doped fiber laser based on a double-circulator interferometer. Laser Physics Letters, 16, 015104(2019).

    [18] T Yin, Y Song, X Jiang, et al. 400 mW narrow linewidth single-frequency fiber ring cavity laser in 2 μm waveband. Optics Express, 27, 15794(2019).

    [19] S Lim, J Yoo, S Kim. Widely tunable watt-level single-frequency Tm-doped fiber ring laser as pump for Mid-IR frequency generation. IEEE Photonics Journal, 8, 1502006(2016).

    [20] K Wang, Z Wen, H Chen, et al. Single-frequency all-polarization-maintaining ytterbium-doped bidirectional fiber laser. Optics Letters, 46, 404(2021).

    [21] B Yin, S Feng, Z Liu, et al. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter. Optics Express, 22, 22528(2014).

    [22] B Yin, Z Liu, S Feng, et al. Stable single-polarization single-longitudinal-mode linear cavity erbium-doped fiber laser based on structured chirped fiber Bragg grating. Applied Optics, 54, 6(2015).

    [23] F Yan, W Peng, S Liu, et al. Dual-wavelength single-longitudinal-mode Tm-doped fiber laser using PM-CMFBG. IEEE Photonics Technology Letters, 27, 951(2015).

    [24] Q Wen, Z Sun, Y Gan, et al. Sub-kilohertz linewidth fiber laser by using Bragg grating filters. Applied Optics, 60, 4299(2021).

    [25] B Lu, L Yuan, X Qi, et al. MoS2 saturable absorber for single frequency oscillation of highly Yb-doped fiber laser. Chinese Optics Letters, 14, 071404(2016).

    [26] X Liu, L Ji, F Zhu, et al. Linear-cavity-based single frequency fiber laser with a loop mirror and Ti2CTx quantum dots. Optical Materials, 122, 111686(2021).

    [27] Z Wei, S Chen, J Ding, et al. Recent advance in tunable single-frequency fiber laser based on two-dimensional materials. Frontiers of Physics, 8, 580602(2021).

    [28] P Fu, X Feng, B Lu, et al. Switchable dual-wavelength SLM narrow linewidth fiber laser based on nonlinear amplifying loop mirror. Optics & Laser Technology, 98, 56(2018).

    [29] S Xu, Z Yang, W Zhang, et al. 400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser. Optics Letters, 36, 3708(2011).

    [30] P Hofmann, C Voigtlander, S Nolte, et al. 550-mW output power from a narrow linewidth all-phosphate fiber laser. Journal of Lightwave Technology, 31, 756(2013).

    [31] X Guan, C Yang, T Qiao, et al. High-efficiency sub-watt in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1950 nm. Optics Express, 26, 6817(2018).

    [32] S Fu, X Zhu, J Zong, et al. Diode-pumped 1.15 W linearly polarized single-frequency Yb3+-doped phosphate fiber laser. Optics Express, 29, 30637(2021).

    [33] L Zhang, J Zhang, Q Sheng, et al. Watt-level 1.7-μm single-frequency thulium-doped fiber oscillator. Optics Express, 29, 27048(2021).

    [34] J Zhang, Q Sheng, L Zhang, et al. 2.56 W single-frequency all-fiber oscillator at 1720 nm. Advanced Photonics Research, 3, 2100256(2022).

    [35] C Robin, I Dajani, B Pulford. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power. Optics Letters, 39, 666(2014).

    [36] L Huang, H Wu, R Li, et al. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier. Optics Letters, 41, 1(2017).

    [37] W Lai, P Ma, W Liu, et al. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber. Optics Express, 28, 20908(2020).

    [38] Y An, Z Pan, H Yang, et al. 400-W single-mode single-frequency laser output from homemade tapered fiber. Acta Physica Sinica, 70, 204024(2021).

    [39] C Shi, S Fu, X Deng, et al. 435 W single-frequency all-fiber amplifier at 1064 nm based on cascaded hybrid active fibers. Optics Communications, 502, 127428(2022).

    [40] M Xue, C Gao, L Niu, et al. A 51.3 W, sub-kHz-linewidth linearly polarized all-fiber laser at 1560 nm. Laser Physics, 30, 035104(2020).

    [41] X Guan, Q Zhao, W Lin, et al. High-efficiency and high-power single-frequency fiber laser at 1.6 μm based on cascaded energy-transfer pumping. Photonics Research, 8, 414(2020).

    [42] X Wang, X Jin, W Wu, et al. 310-W single frequency Tm-doped all-Fiber MOPA. IEEE Photonics Technology Letters, 27, 677(2015).

    [43] X Guan, C Yang, Q Gu, et al. 316 W high-brightness narrow-linewidth linearly-polarized all-fiber single frequency-laser at 1950 nm. Applied Physics Express, 14, 112004(2021).

    [44] C Yang, Q Zhao, Z Feng, et al. 1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser. Optics Express, 24, 29794(2016).

    [45] P Honzatko, Y Baravets, A Myakalwar. Single-frequency fiber laser based on a fiber ring resonator filter tunable in a broad range from 1023 nm to 1107 nm. Optics Letters, 43, 1339(2018).

    [46] Y Tao, S Zhang, M Jiang, et al. High power and high efficiency single-frequency 1030 nm DFB fiber laser. Optics & Laser Technology, 145, 107519(2022).

    [47] Y Tao, M Jiang, C Li, et al. Low threshold 1150 nm single-polarization single-frequency Yb-doped DFB fiber laser. Optics Letters, 46, 3705(2021).

    [48] L Huang, C Yang, T Tan, et al. Sub-kHz-linewidth wavelength-tunable single-frequency ring-cavity fiber laser for C- and L-band operation. Journal of Lightwave Technology, 39, 4794(2021).

    [49] W Walasik, D Traoré, A Amavigan, et al. 2-μm narrow linewidth all-fiber DFB fiber Bragg grating lasers for Ho-and Tm-doped fiber-amplifier applications. Journal of Lightwave Technology, 39, 5096(2021).

    [50] X Cen, X Guan, C Yang, et al. Short-wavelength, in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1.7 μm. IEEE Photonics Technology Letters, 33, 350(2021).

    [51] M Mollaee, X Zhu, J Zong, et al. Single-frequency blue laser fiber amplifier. Optics Letters, 43, 423(2018).

    [52] Q Fang, Y Xu, S Fu, et al. Single-frequency distributed Bragg reflector Nd doped silica fiber laser at 930 nm. Optics Letters, 41, 1829(2016).

    [53] S Fu, X Zhu, J Zong, et al. Single-frequency Nd3+-doped phosphate fiber laser at 915 nm. Journal of Lightwave Technology, 39, 1808(2021).

    [54] X Zhu, J Zong, A Miller, et al. Single-frequency Ho3+-doped ZBLAN fiber laser at 1200 nm. Optics Letters, 37, 4185(2012).

    [55] M Bernier, V Michaud-Belleau, S Levasseur, et al. All-fiber DFB laser operating at 2.8 μm. Optics Letters, 40, 81(2015).

    [56] D Hudson, J Williams, J Withford, et al. Single-frequency fiber laser operating at 2.9 μm. Optics Letters, 38, 2388(2013).

    [57] S Loranger, V Karpov, G Schinn, et al. Single-frequency low-threshold linearly polarized DFB Raman fiber lasers. Optics Letters, 42, 3864(2017).

    [58] J Wu, X Zhu, H Wei, et al. Power scalable 10 W 976 nm single-frequency linearly polarized laser source. Optics Letters, 43, 951(2018).

    [59] B Gouhier, G Guiraud, S Rota-Rodrigo, et al. 25 W single-frequency, low noise fiber MOPA at 1120 nm. Optics Letters, 43, 308(2018).

    [60] B Gouhier, C Dixneuf, A Hilico, et al. Low Intensity noise high-power tunable fiber-based laser around 1007 nm. Journal of Lightwave Technology, 37, 3539(2019).

    [61] B Gouhier, S Rota-Rodrigo, G Guiraud, et al. Low-noise single-frequency 50 W fiber laser operating at 1013 nm. Laser Physics Letters, 16, 045103(2019).

    [62] B Yao, Q Chen, Y Chen, et al. 280 mHz linewidth DBR fiber laser based on PDH frequency stabilization with ultrastable cavity. Chinese Journal of Lasers, 48, 0501014(2021).

    [63] Q Zhao, Z Zhang, B Wu, et al. Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection. Photonics Research, 6, 326(2018).

    [64] Q Zhao, K Zhou, Z Wu, et al. Near quantum-noise limited and absolute frequency stabilized 1083 nm single-frequency fiber laser. Optics Letters, 43, 42(2018).

    [65] Z Qi, T Yin, X Jiang, et al. Narrow-linewidth high-efficiency single-frequency ytterbium-doped fiber laser with highly linear polarization at 1064 nm. Applied Optics, 60, 2833(2021).

    [66] L Hao, X Wang, K Jia, et al. Narrow-linewidth single-polarization fiber laser using non-polarization optics. Optics Letters, 46, 3769(2021).

    [67] H Liu, Q Lu, S Wei, et al. Long-term stable 850-Hz linewidth single-longitudinal-mode ring cavity fiber laser using polari-zation-maintaining fiber. Applied Physics B, 126, 106(2020).

    [68] C Yang, S Xu, D Chen, et al. 52 W kHz-linewidth low-noise linearly-polarized all-fiber single-frequency MOPA laser. Journal of Optics, 18, 055801(2016).

    [69] F Wellmann, M Steinke, F Meylahn, et al. High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors. Optics Express, 27, 28523(2019).

    [70] C Dixneuf, G Guiraud, Y Bardin, et al. Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm. Optics Express, 28, 10960(2020).

    [71] D Darwich, Y Bardin, M Goeppner, et al. Ultralow-intensity noise, 10 W all-fiber single-frequency tunable laser system around 1550 nm. Applied Optics, 60, 8550(2021).

    [72] Q Zhang, Y Hou, X Wang, et al. 5 W ultra-low-noise 2 µm single-frequency fiber laser for next-generation gravitational wave detectors. Optics Letters, 45, 4911(2020).

    [73] Y Hou, Q Zhang, S Qi, et al. 1.5 μm polarization-maintaining dual-wavelength single-frequency distributed Bragg reflection fiber laser with 28 GHz stable frequency difference. Optics Letters, 43, 1383(2018).

    [74] A Budarnykh, A Vladimirskaya, I Lobach, et al. Broad-range self-sweeping single-frequency linearly polarized Tm-doped fiber laser. Optics Letters, 43, 5307(2018).

    [75] E Kashirina, I Lobach, Kablukov S and. Single-frequency self-sweeping Nd-doped fiber laser. Optics Letters, 44, 2252(2019).

    [76] K Li, H Deng, C Yang, et al. Multi-wavelength, passively Q-switched, single-frequency fiber laser. IEEE Photonics Technology Letters, 31, 1479(2019).

    [77] L Huang, Z Guan, C Yang, et al. High-precision tunable single-frequency fiber laser at 1.5 μm based on self-injection locking. IEEE Photonics Technology Letters, 34, 633-636(2021).

    [78] Z Bai, D Jin, J Ding, . Brillouin laser power exceeds 20 W. Chinese Journal of Lasers, 48, 2116003(2021).

    [79] Y Guo, M Xu, W Peng, et al. Realization of a 101 W single-frequency continuous wave all-solid-state 1064 nm laser by means of mode self-reproduction. Optics Letters, 43, 6017(2018).

    [80] W Peng, P Jin, F Li, et al. A review of the high-power all-solid-state single-frequency continuous-wave laser. Micro-machines, 12, 1426(2021).

    [81] A Schülzgen, L Li, V Temyanko, et al. Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber. Optics Express, 14, 7087(2006).

    [82] Y Tao, M Jiang, L Liu, et al. Single-polarization single-frequency Brillouin fiber laser emits near 5-W power at 1 μm. Optics Letters, 47, 1742(2022).

    [83] G Goodno, L Book, J Rothenberg. Low-phase-noise, single-frequency, single-mode 608   W thulium fiber amplifier. Optics Letters, 34, 1204(2009).

    [84] L Huang, W Lai, P Ma, et al. Tapered Yb-doped fiber enabled monolithic high-power linearly polarized single-frequency laser. Optics Letters, 45, 4001(2020).

    [85] H Otto, C Jauregui, F Stutzki, et al. Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector. Optics Express, 21, 17285(2013).

    [86] C Jauregui, C Stihler, A Tünnermann, et al. Pump-modulation-induced beam stabilization in high-power fiber laser systems above the mode instability threshold. Optics Express, 26, 10691(2018).

    [87] C Stihler, C Jauregui, S Kholaif, et al. Intensity noise as a driver for transverse mode instability in fiber amplifiers. PhotoniX, 1, 8(2020).

    [88] A Sincore, J Bradford, J Cook, et al. High average power thulium-doped silica fiber lasers: Review of systems and concepts. Journal of Selected Topics in Quantum Electronics, 24, 0901808(2017).

    [89] D Creeden, B Johnson, S Setzler, et al. Resonantly pumped Tm-doped fiber laser with >90% slope efficiency. Optics Letters, 39, 470(2014).

    [90] Y Wang, J Yang, C Huang, et al. High power tandem-pumped thulium-doped fiber laser. Optics Express, 23, 2991(2015).

    [91] E Dianov. Bismuth-doped optical fibers: A challenging active medium for near-IR lasers and optical amplifiers. Light-Science & Applications, 1, e12(2012).

    [92] N Thipparapu, Y Wang, A Umnikov, et al. Bi-doped fiber amplifiers and lasers [Invited]. Optical Materials Express, 9, 2446(2019).

    [93] L Zhang, H Jiang, S Cui, et al. Versatile Raman fiber laser for sodium laser guide star. Laser & Photonics Reviews, 8, 889(2014).

    [94] Y Miao, P Ma, W Liu, et al. First demonstration of co-pumped single-frequency Raman fiber amplifier with spectral-broadening-free property enabled by ultra-low noise pumping. IEEE Access, 6, 71988(2019).

    [95] Y Xu, K Mak, Murdoch S and. Multiwatt level output powers from a tunable fiber optical parametric oscillator. Optics Letters, 36, 1966(2011).

    [96] S Yang, K Cheung, Y Zhou, et al. Tunable single-longitudinal-mode fiber optical parametric oscillator. Optics Letters, 35, 481(2010).

    [97] L Lim, Bakar M Abu, Mahdi M and. Wavelength-tunable single longitudinal mode fiber optical parametric oscillator. Optics Express, 25, 5501(2017).

    [98] J Zou, T Li, Y Dou, et al. Direct generation of watt-level yellow Dy3+-doped fiber laser. Photonics Research, 9, 446(2021).

    [99] M Lord, V Fortin, F Maes, et al. 2.3 W monolithic fiber laser operating in the visible. Optics Letters, 46, 2392(2021).

    [100] V Fortin, F Jobin, M Larose, et al. 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm. Optics Letters, 44, 491(2019).

    [101] M Lemieux-Tanguay, V Fortin, T Boilard, et al. 15 W monolithic fiber laser at 3.55 µm. Optics Letters, 47, 289(2022).

    [102] S Häfner, S Falke, C Grebing, et al. 8 × 10−17 fractional laser frequency instability with a long room-temperature cavity. Optics Letters, 40, 2112(2015).

    [103] [103] Dahl K, Cebeci P, Fitzau O, et al. A new laser technology f LISA [C]International Conference on Space Optics, 2018: 111800 C.

    [104] H Vahlbruch, D Wilken, M Mehmet, et al. Laser power stabilization beyond the shot noise limit using squeezed light. Physical Review Letters, 121, 173601(2018).

    [105] Y Wang, L Gao, X Zhang, et al. Recent development of low noise laser for precision measurement (Invited). Infrared and Laser Engineering, 49, 20201073(2020).

    [106] A Popp, V Distler, K Jaksch, et al. Quantum-limited measurements of intensity noise levels in Yb doped fiber amplifiers. Applied Physics B, 126, 130(2020).

    [107] H Tünnermann, J Neumann, D Kracht, et al. Gain dynamics and refractive index changes in fiber amplifiers: a frequency domain approach. Optics Express, 20, 13539(2012).

    [108] H Tünnermann, J Neumann, D Kracht, et al. Frequency resolved analysis of thermally induced refractive index changes in fiber amplifiers. Optics Letters, 37, 3597(2012).

    [109] J Zhao, G Guiraud, F Floissat, et al. Gain dynamics of clad-pumped Yb-fiber amplifier and intensity noise control. Optics Express, 25, 357(2017).

    [110] P Gierschke, C Jauregui, T Gottschall, et al. Relative amplitude noise transfer function of an Yb3+-doped fiber amplifier chain. Optics Express, 27, 17041(2019).

    [111] N Zhao, W Li, J Li, et al. Elimination of the photodarkening effect in an Yb-doped fiber laser with deuterium. Journal of Lightwave Technology, 37, 3021(2019).

    [112] N Zhao, K Peng, J Li, et al. Photodarkening effect suppression in Yb-doped fiber through the nanoporous glass phase-separation fabrication method. Optical Materials Express, 9, 1085(2019).

    [113] T Theeg, C Ottenhues, H Sayinc, et al. Core-pumped single-frequency fiber amplifier with an output power of 158 W. Optics Letters, 41, 9(2016).

    [114] J Zhao, G Guiraud, C Pierre, et al. High-power all-fiber ultra-low noise laser. Applied Physics B, 124, 114(2018).

    [115] L Wei, F Cleva, Man C Nary. Coherently combined master oscillator fiber power amplifiers for Advanced Virgo. Optics Letters, 41, 5817(2016).

    [116] F Wellmann, N Bode, P Wessels, et al. Low noise 400 W coherently combined single frequency laser beam for next generation gravitational wave detectors. Optics Letters, 29, 10140(2021).

    [117] G Ball, W Morey, W Glenn. Standing-wave monomode erbium fiber laser. IEEE Photonics Technology Letters, 3, 613(1991).

    Tools

    Get Citation

    Copy Citation Text

    Can Li, Pu Zhou, Pengfei Ma, Man Jiang, Yue Tao, Liu Liu. Research progress of single-frequency fiber laser technology (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220237

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 6, 2022

    Accepted: --

    Published Online: Dec. 20, 2022

    The Author Email: Zhou Pu (zhoupu203@163.com)

    DOI:10.3788/IRLA20220237

    Topics