Laser & Optoelectronics Progress, Volume. 60, Issue 9, 0914001(2023)

Effect of Scanning Strategy on Thermodynamics Evolution of Selective Laser Melting

Peiying Bian1、*, Kewei Xu1, Enhuai Yin2, Fangxia Ye1, and Yongjian Zhang1
Author Affiliations
  • 1Xi'an Key Laboratory of Intelligent Additive Manufacturing Technologies, Shaanxi Key Laboratory of Surface Engineering and Remanufacturing, School of Mechanical and Material Engineering, Xi'an University, Xi'an 710065, Shaanxi, China
  • 2The 20th Research Institute of China Electronics Technology Group Corporation, Xi'an 710068, Shaanxi, China
  • show less
    References(22)

    [1] Jia H L, Sun H, Wang H Z et al. Scanning strategy in selective laser melting (SLM): a review[J]. The International Journal of Advanced Manufacturing Technology, 113, 2413-2435(2021).

    [2] Gu D D, Guo M, Zhang H M et al. Effects of laser scanning strategies on selective laser melting of pure tungsten[J]. International Journal of Extreme Manufacturing, 2, 92-104(2020).

    [3] Yin Y, Cai W J, Xiao M Z et al. Effect of scanning method on microstructure and properties of 316L by selective laser melting[J]. Applied Laser, 38, 339-344(2018).

    [4] Zhao X, He K T, Li H X. Microstructure of selective laser melting parts under different scanning strategies[J]. Aeronautical Manufacturing Technology, 62, 64-71(2019).

    [5] Wang D, Wu S B, Yang Y Q et al. The effect of a scanning strategy on the residual stress of 316L steel parts fabricated by selective laser melting (SLM)[J]. Materials, 11, 1821(2018).

    [6] Gao M X, Wang J H, Ren J et al. Effects of scanning strategies on microstructure and properties of selective laser melted cobalt-chromium alloy[J]. Laser Journal, 41, 133-136(2020).

    [7] Song Y N, Sun Q D, Guo K et al. Effect of scanning strategies on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting[J]. Materials Science and Engineering: A, 793, 139879(2020).

    [8] Ali H, Ghadbeigi H, Mumtaz K. Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti6Al4V[J]. Materials Science and Engineering: A, 712, 175-187(2018).

    [9] Giganto S, Zapico P, Castro-Sastre M Á et al. Influence of the scanning strategy parameters upon the quality of the SLM parts[J]. Procedia Manufacturing, 41, 698-705(2019).

    [10] Hajnys J, Pagáč M, Měsíček J et al. Influence of scanning strategy parameters on residual stress in the SLM process according to the bridge curvature method for AISI 316L stainless steel[J]. Materials, 13, 1659(2020).

    [11] Rivalta F, Ceschini L, Jarfors A E W et al. Effect of scanning strategy in the SLM process of 18Ni300 maraging steel[J]. Materials & Design, 109608(2021).

    [12] Chen D N, Liu T T, Liao W H et al. Temperature field during selective laser melting of metal powder under different scanning strategies[J]. Chinese Journal of Lasers, 43, 0403003(2016).

    [13] Cheng B, Shrestha S, Chou K. Stress and deformation evaluations of scanning strategy effect in selective laser melting[J]. Additive Manufacturing, 12, 240-251(2016).

    [14] Liu X P, Wu M P, Wei J F. The influence of scanning path on the quality of selective laser melting forming[J]. Machine Design&Research, 35, 133-137(2019).

    [15] Lu X F, Lin X, Ma L et al. Effect of scanning path on thermo-mechanical field of laser solid forming TC4 part[J]. Journal of Materials Engineering, 47, 55-62(2019).

    [16] Miao X J, Liu X, Lu P P et al. Influence of scanning strategy on the performances of GO-reinforced Ti6Al4V nanocomposites manufactured by SLM[J]. Metals, 10, 1379(2020).

    [17] Hussein A, Hao L, Yan C Z et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting[J]. Materials & Design, 52, 638-647(2013).

    [18] Yang Z L, Li Q H, Ruan F X et al. FDTD for plasmonics: applications in enhanced Raman spectroscopy[J]. Chinese Science Bulletin, 55, 2635-2642(2010).

    [19] Foroozmehr A, Badrossamay M, Foroozmehr E et al. Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed[J]. Materials & Design, 89, 255-263(2016).

    [20] Zhong Y, Liu L F, Wikman S et al. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting[J]. Journal of Nuclear Materials, 470, 170-178(2016).

    [21] Bian P Y, Shi J, Shao X D et al. Evolution of cyclic thermal stress in selective laser melting of 316L stainless steel: a realistic numerical study with experimental verification[J]. The International Journal of Advanced Manufacturing Technology, 104, 3867-3882(2019).

    [22] Zavala-Arredondo M, Ali H, Groom K M et al. Investigating the melt pool properties and thermal effects of multi-laser diode area melting[J]. The International Journal of Advanced Manufacturing Technology, 97, 1383-1396(2018).

    Tools

    Get Citation

    Copy Citation Text

    Peiying Bian, Kewei Xu, Enhuai Yin, Fangxia Ye, Yongjian Zhang. Effect of Scanning Strategy on Thermodynamics Evolution of Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0914001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Oct. 25, 2021

    Accepted: Mar. 3, 2022

    Published Online: May. 9, 2023

    The Author Email: Bian Peiying (banry3@163.com)

    DOI:10.3788/LOP212790

    Topics