Laser & Optoelectronics Progress, Volume. 60, Issue 8, 0811005(2023)

Review of High-Resolution Shape Measurement Methods for Extendable Surfaces

Luyao Ma, Jigui Zhu, Linghui Yang*, Ruiying Liao, Haoyue Liu, Yiyuan Fan, and Shuo Yang
Author Affiliations
  • State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
  • show less
    References(79)

    [1] Saadat M, Cretin L. Measurement systems for large aerospace components[J]. Sensor Review, 22, 199-206(2002).

    [2] Zhang B, Yao B G, Ke Y L. A novel posture alignment system for aircraft wing assembly[J]. Journal of Zhejiang University-SCIENCE A, 10, 1624-1630(2009).

    [3] Pugliese R, Konrad T, Abel D. LiDAR-aided relative and absolute localization for automated UAV-based inspection of aircraft fuselages[C](2021).

    [4] Liu C J, Yang X Y, Zhu J G et al. Flexible coordinate measurement system based on industrial robot for car body-in-white[J]. Journal of Optoelectronics·Laser, 17, 207-210(2006).

    [5] Zhang D H, Liang J, Guo C. Photogrammetric 3D measurement method applying to automobile panel[C], 70-74(2010).

    [6] Huang R B, Zhang J. Research on 3D precision measurement technology based on total station and ship 3D design system[J]. Marine Technology, 14-16(2011).

    [7] Shen M, Guan G. An algorithm for automatic matching of point clouds in hull segmentation measurement[J]. Marine Technology, 17-18, 32(2011).

    [8] Harding K. Engineering precision[J]. Nature Photonics, 2, 667-669(2008).

    [9] Xiong Z M, Li Q Q, Mao Q Z et al. A 3D laser profiling system for rail surface defect detection[J]. Sensors, 17, 1791(2017).

    [10] Yang X L, Zhou T R, Wang L M. Reverse engineering application in automobile parts design[J]. Advanced Materials Research, 194/195, 2216-2219(2011).

    [11] Yin L, Wang X J, Qin G Y. Dynamic measurement method of large-scale surface based on visual structured light technology[J]. Laser & Optoelectronics Progress, 57, 131202(2020).

    [12] Swinkels B L. High accuracy absolute distance metrology[J]. Applied Sciences, 621, 23(2006).

    [13] Zhang H L, Ren Y J, Liu C J et al. Flying spot laser triangulation scanner using lateral synchronization for surface profile precision measurement[J]. Applied Optics, 53, 4405-4412(2014).

    [14] Wei Z Z, Zhou F Q, Zhang G J. 3D coordinates measurement based on structured light sensor[J]. Sensors and Actuators A: Physical, 120, 527-535(2005).

    [15] Zhan D. Research on key techniques of line-structured light vision measurement and its applications in railway dynamic inspection[D](2016).

    [16] Reich C, Ritter R, Thesing J. 3-D shape measurement of complex objects by combining photogrammetry and fringe projection[J]. Optical Engineering, 39, 224-231(2000).

    [17] Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Applied Optics, 22, 3977(1983).

    [18] Han H Y. Research on 3D model reconstruction method based on binocular stereo vision[D](2014).

    [19] Hou T L. Inspection and evaluation of assembly quality of high-speed train BIW based on structured light[D](2020).

    [20] Li Q Q, Mao Q Z. Progress on dynamic and precise engineering surveying for pavement and track[J]. Acta Geodaetica et Cartographica Sinica, 46, 1734-1741(2017).

    [21] Buckhorst A F, Kluge-Wilkes A, Schmitt R H. Flying metrology and defect identification for aircraft surface inspection[J]. Photonics Views, 16, 68-71(2019).

    [22] Ma G Q, Liu L, Yu Z L et al. Application and development of three-dimensional profile measurement for large and complex surface[J]. Chinese Optics, 12, 214-228(2019).

    [23] Yang S R. Method and technology for robotic measurement of complex surface on large-scale components[D](2017).

    [24] Liu T. Research on key technologies for automated measurement of automotive complex parts[D](2018).

    [25] Zhang L B, Wang P J, Zhang X et al. Research on 3-D structured light rail detection of high speed railway and viewpoint optimization[J]. Machinery Design & Manufacture, 69-72(2016).

    [26] Wang K X. Fast full field measurement method of large size grind wheel surface topography based on line array camera[D](2018).

    [27] Zhao Y D. Research and implement of vehicle-mounted automatic pavement distress detection system based on line-scan camera[D](2016).

    [28] Chu T S, Zheng S B, Peng L L et al. Image acquisition and vibration compensation method of track fasteners[J]. Computer Measurement & Control, 27, 223-227, 232(2019).

    [29] Zhao J, Zhou Y, Zhao J W et al. Mover position detection for PMSLM based on line-scanning fence pattern and subpixel polynomial fitting algorithm[J]. IEEE/ASME Transactions on Mechatronics, 25, 44-54(2020).

    [30] Wang Y, Yuan F, Jiang H et al. High precision pose calculation of space target based on three linear array CCD[J]. Acta Optica Sinica, 38, 0515004(2018).

    [31] Wang X P. Geometric rectification for ZY-3 image with sparse control points[D](2014).

    [32] Hu E Y, He Y M. Surface profile measurement of moving objects by using an improved π phase-shifting Fourier transform profilometry[J]. Optics and Lasers in Engineering, 47, 57-61(2009).

    [33] Denkena B, Huke P. Development of a high resolution pattern projection system using linescan cameras[J]. Proceedings of SPIE, 7389, 73890F(2009).

    [34] Hu E Y, Zhu Y H. 3D online measurement of spare parts with variable speed by using line-scan non-contact method[J]. Optik, 124, 1472-1476(2013).

    [35] Zhang P C, Takeda T, Toque J A et al. A line scan camera based stereo method for high resolution 3D image reconstruction[J]. Proceedings of SPIE, 9018, 901807(2014).

    [36] Zhang P C, Jay Arre T, Ide-Ektessabi A. A line scan camera-based structure from motion for high-resolution 3D reconstruction[J]. Journal of Cultural Heritage, 16, 656-663(2015).

    [37] Wu S, Liu Z, Ren Y et al. A novel stereo vision sensor for fast moving objects[C], 41-45(2018).

    [38] Liu Z, Wu S N, Wu Q et al. A novel stereo vision measurement system using both line scan camera and frame camera[J]. IEEE Transactions on Instrumentation and Measurement, 68, 3563-3575(2019).

    [39] Ilchev T, Lilienblum E, Joedicke B et al. A stereo line sensor system to high speed capturing of surfaces in color and 3D shape[C], 809-812(2012).

    [40] Lilienblum E, Al-Hamadi A. A structured light approach for 3d surface reconstruction with a stereo line-scan system[C], 1171-1176(2014).

    [41] Lilienblum E, Al-Hamadi A. A structured light approach for 3-D surface reconstruction with a stereo line-scan system[J]. IEEE Transactions on Instrumentation and Measurement, 64, 1258-1266(2015).

    [42] Lilienblum E, Al-Hamadi A. Pattern optimization for 3D surface reconstruction with an active line scan camera system[C], 3159-3163(2018).

    [43] Sun B, Zhu J G, Yang L H et al. Sensor for in-motion continuous 3D shape measurement based on dual line-scan cameras[J]. Sensors, 16, 1949(2016).

    [44] Yang L H, Sun B, Liao R Y et al. A stereo line-scan system for 3D shape measurement of fast-moving objects[J]. Proceedings of SPIE, 10621, 106210A(2018).

    [45] Liao R Y, Yang L H, Ma L Y et al. A dense 3-D point cloud measurement based on 1-D background-normalized Fourier transform[J]. IEEE Transactions on Instrumentation and Measurement, 70, 5014412(2021).

    [46] Holländer B, Štolc S, Huber-Mörk R. Multi-view line-scan inspection system using planar mirrors[J]. Proceedings of SPIE, 8791, 879118(2013).

    [47] Štolc S, Soukup D, Holländer B et al. Depth and all-in-focus imaging by a multi-line-scan light-field camera[J]. Journal of Electronic Imaging, 23, 053020(2014).

    [48] Blaschitz B, Štolc S, Antensteiner D. Geometric calibration and image rectification of a multi-line scan camera for accurate 3D reconstruction[J]. Electronic Imaging, 30, 240(2018).

    [49] Liao R Y, Ma L Y, Yang L H et al. Dense three-dimensional point continuous measurement based on triple line-scan cameras[J]. Proceedings of SPIE, 12030, 12030(2021).

    [50] Liao R Y, Yang L H, Ma L Y et al. In-motion continuous point cloud measurement based on bundle adjustment fused with motion information of triple line-scan images[J]. Optics Express, 30, 21544-21567(2022).

    [51] Steger C, Ulrich M. A multi-view camera model for line-scan cameras with telecentric lenses[J]. Journal of Mathematical Imaging and Vision, 64, 105-130(2022).

    [52] Steger C, Ulrich M. A camera model for line-scan cameras with telecentric lenses[J]. International Journal of Computer Vision, 129, 80-99(2021).

    [53] Wang L, Sun B, Long C Y et al. A novel method for calibrating intrinsic parameters of linear array cameras based on collinear feature points[J]. Infrared and Laser Engineering, 44, 1878-1883(2015).

    [54] Wang G H, Qian K M. Review on line-scan camera calibration methods[J]. Acta Optica Sinica, 40, 0111011(2020).

    [55] Horaud R, Mohr R, Lorecki B. On single-scanline camera calibration[J]. IEEE Transactions on Robotics and Automation, 9, 71-75(1993).

    [56] Zhuang H, Horaud R. A note on“On single-scanline camera calibration” [and reply][J]. IEEE Transactions on Robotics and Automation, 11, 470-471(1995).

    [57] Luna C A, Mazo M, Lazaro J L et al. Calibration of line-scan cameras[J]. IEEE Transactions on Instrumentation and Measurement, 59, 2185-2190(2010).

    [58] Lilienblum E, Al-Hamadi A, Michaelis B. A coded 3D calibration method for line-scan cameras[M]. Weickert J, Hein M, Schiele B. Pattern recognition, 8142, 81-90(2013).

    [59] Li D D, Wen G J, Bing W H et al. Cross-ratio invariant based line scan camera geometric calibration with static linear data[J]. Optics and Lasers in Engineering, 62, 119-125(2014).

    [60] Li D D, Wen G J, Qiu S H. Cross-ratio–based line scan camera calibration using a planar pattern[J]. Optical Engineering, 55, 014104(2016).

    [61] Sun B, Zhu J G, Yang L H et al. Calibration of line-scan cameras for precision measurement[J]. Applied Optics, 55, 6836-6843(2016).

    [62] Sun B, Zhu J G, Yang L H et al. Stereo line-scan sensor calibration for 3D shape measurement[J]. Applied Optics, 56, 7905-7914(2017).

    [63] Niu M H, Song K C, Wen X et al. The line scan camera calibration based on space rings group[J]. IEEE Access, 6, 23711-23721(2018).

    [64] Liao R Y, Zhu J G, Yang L H et al. Flexible calibration method for line-scan cameras using a stereo target with hollow stripes[J]. Optics and Lasers in Engineering, 113, 6-13(2019).

    [65] Usamentiaga R, Garcia D F, de la Calle F J. Line-scan camera calibration: a robust linear approach[J]. Applied Optics, 59, 9443-9453(2020).

    [66] Draréni J, Roy S, Sturm P. Plane-based calibration for linear cameras[J]. International Journal of Computer Vision, 91, 146-156(2011).

    [67] Hui B W, Zhong J R, Wen G J et al. Determination of line scan camera parameters via the direct linear transformation[J]. Optical Engineering, 51, 113201(2012).

    [68] Hui B W, Wen G J, Zhang P et al. A novel line scan camera calibration technique with an auxiliary frame camera[J]. IEEE Transactions on Instrumentation and Measurement, 62, 2567-2575(2013).

    [69] Qin Q, Zhang X Y, Guo X et al. Research on high temperature optical deformation measurement method based on digital image[J]. Aeronautical Science & Technology, 32, 1-11(2021).

    [70] Zheng T X, Huang S, Li Y F et al. Key techniques for vision based 3D reconstruction: a review[J]. Acta Automatica Sinica, 46, 631-652(2020).

    [71] Zuo C, Tao T Y, Feng S J et al. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10, 000 frames per second[J]. Optics and Lasers in Engineering, 102, 70-91(2018).

    [72] Sun B. Research on In-motion high-density point cloud acquisition method[D](2018).

    [73] Zhan D, Yu L, Xiao J et al. Study on high-accuracy vision measurement approach for dynamic inspection of full cross-sectional rail profile[J]. Journal of the China Railway Society, 37, 96-106(2015).

    [74] Ma Z J, Dong Y R, Liu H L et al. Rail corrugation dynamic measurement method based on multi-line structured-light vision[J]. Chinese Journal of Scientific Instrument, 39, 189-197(2018).

    [75] Xue P, Chai X D, Zheng S B. Research on relative vibration state measurement method of vehicle and rail based on vision[J]. Computer Measurement & Control, 24, 39-41, 45(2016).

    [76] Yin L, Wang X J, Ni Y B. Flexible three-dimensional reconstruction via structured-light-based visual positioning and global optimization[J]. Sensors, 19, 1583(2019).

    [77] Ayaz S M, Kim M Y. Multiview registration-based handheld 3D profiling system using visual navigation and structured light[J]. International Journal of Optomechatronics, 11, 1-14(2017).

    [78] Zhu L L, Ma X, Ma X S et al. Research on three-dimensional laser Doppler vibrometer[J]. Electronics World, 52-53(2021).

    [79] Zhang Z H, Liu W, Liu G D et al. Overview of the development and application of 3D vision measurement technology[J]. Journal of Image and Graphics, 26, 1483-1502(2021).

    Tools

    Get Citation

    Copy Citation Text

    Luyao Ma, Jigui Zhu, Linghui Yang, Ruiying Liao, Haoyue Liu, Yiyuan Fan, Shuo Yang. Review of High-Resolution Shape Measurement Methods for Extendable Surfaces[J]. Laser & Optoelectronics Progress, 2023, 60(8): 0811005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Dec. 30, 2022

    Accepted: Mar. 1, 2023

    Published Online: Apr. 17, 2023

    The Author Email: Yang Linghui (icelinker@tju.edu.cn)

    DOI:10.3788/LOP223445

    Topics