Matter and Radiation at Extremes, Volume. 7, Issue 6, 065903(2022)

3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion. Part II

A. Tentori*... A. Colaïtis and D. Batani |Show fewer author(s)
Author Affiliations
  • Centre Lasers Intenses et Applications, CELIA, Université Bordeaux CEA-CNRS, UMR 5107, F-33405 Talence, France
  • show less
    References(45)

    [1] J.Nuckolls, A.Thiessen, L.Wood, G.Zimmerman. Laser compression of matter to super high densities: Thermonuclear (CTR) applications. Nature, 239, 139-142(1972).

    [2] N. G.Basov, O. N.Krokhin, G. V.Sklizkov. Heating of laser plasmas for thermonuclear fusion. Laser Interact. Relat. Plasma Phenom., 2, 398(1972).

    [3] V. A.Shcherbakov. Ignition of a laser fusion target by a focusing shock wave. Sov. J. Plasma Phys, 9, 240(1983).

    [4] K. S.Anderson, R.Betti, L. J.Perkins, A. A.Solodov, W.Theobald, C. D.Zhou. Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett., 98, 155001(2007).

    [5] S.Atzeni, R.Betti, B.Canaud, L. J.Perkins, X.Ribeyre, A. J.Schmitt, G.Schurtz. Shock ignition of thermonuclear fuel: Principles and modelling. Nucl. Fusion, 54, 054008(2014).

    [6] B. B.Afeyan, E. A.Williams. Stimulated Raman sidescattering with the effects of oblique incidence. Phys. Fluids, 28, 3397-3408(1985).

    [7] C. S.Liu, M. N.Rosenbluth. Parametric decay of electromagnetic waves into two plasmons and its consequences. Phys. Fluids, 19, 967-971(1976).

    [8] W. L.Kruer. The Physics of Laser Plasma Interactions Reprint(2003).

    [9] S.Borodziuk, S.Guskov, M.Kalal, A.Kasperczuk, B.Kralikova, E.Krousky, J.Limpouch, K.Masek, M.Pfeifer, T.Pisarczyk, K.Rohlena, J.Skala. Generation of shock waves and formation of craters in a solid material irradiated by a short laser pulse. Quantum Electron., 34, 989-1003(2004).

    [10] J.-L.Feugeas, S.Gus’kov, P.Nicola?, X.Ribeyre, V.Tikhonchuk, M.Touati. Ablation pressure driven by an energetic electron beam in a dense plasma. Phys. Rev. Lett., 109, 255004(2012).

    [11] T.Chodukowski, N.Demchenko, S. Y.Guskov, Z.Kalinowska, A.Kasperczuk, E.Krousky, M.Pfeifer, T.Pisarczyk, O.Renner, M.Smidet?al.. Laser-driven ablation through fast electrons in PALS-experiment at the laser radiation intensity of 1–50 PW/cm2. Laser Part. Beams, 32, 177-195(2014).

    [12] L.Antonelli, F.Barbato, D.Batani, G.Boutoux, A.Colaitis, J.Feugeas, G.Folpini, D.Mancelli, J.Santos, V.Tikhonchuket?al.. Progress in understanding the role of hot electrons for the shock ignition approach to inertial confinement fusion. Nucl. Fusion, 59, 032012(2018).

    [13] K. S.Anderson, D.Batani, R.Betti, A.Casner, J. A.Delettrez, J. A.Frenje, V. Y.Glebov, X.Ribeyre, W.Theobald, J.Trelaet?al.. The control of hot-electron preheat in shock-ignition implosions. Phys. Plasmas, 25, 052707(2018).

    [14] L.Antonelli, S.Atzeni, F.Barbato, D.Batani, G.Boutoux, D.Mancelli, P.Nicola?, A.Tentori, V.Tikhonchuk, J.Trela. Laser-driven strong shocks with infrared lasers at intensity of 1016 W/cm2. Phys. Plasmas, 26, 112708(2019).

    [15] D.Batani, S. D.Baton, E. L.Bel, G.Boutoux, S.Brygoo, A.Casner, A.Cola?tis, L.Jacquet, M.Koenig, C.Rousseaux et al. Preliminary results from the LMJ-PETAL experiment on hot electrons characterization in the context of shock ignition. High Energy Density Phys, 36, 100796(2020).

    [16] K.Anderson, A.Casner, A.Colaitis, E.Le Bel, D.Raffestin, A.Ruocco, A.Tentori, W.Theobald, J.Trela, M.Weiet?al.. Experimental characterization of hot-electron emission and shock dynamics in the context of the shock ignition approach to inertial confinement fusion. Phys. Plasmas, 28, 103302(2021).

    [17] A.Batani, A.Cola?tis, D.Tentori. 3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion: Part I. Matter Radiat. Extremes, 7, 065902(2022).

    [18] S.Agostinelli, J.Allison, K.Amako, J.Apostolakis, H.Araujo, P.Arce, M.Asai, D.Axen, S.Banerjee, G.Barrandet?al.. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A, 506, 250-303(2003).

    [19] A.Cola?tis, G.Duchateau, E.Le Bel, P.Nicola?, X.Ribeyre, V.Tikhonchuk. Influence of laser induced hot electrons on the threshold for shock ignition of fusion reactions. Phys. Plasmas, 23, 072703(2016).

    [20] J.Breil, S.Galera, P.-H.Maire. Multi-material ALE computation in inertial confinement fusion code CHIC. Comput. Fluids, 46, 161(2011).

    [21] C.Moller. Zur theorie des durchgangs schneller elektronen durch materie. Ann. Phys., 406, 531-585(1932).

    [22] R. H.Dalitz, R. E.Peierls. On higher born approximations in potential scattering. Proc. R. Soc. London, Ser. A, 206, 509-520(1951).

    [23] S.Atzeni, J. R.Davies, A.Schiavi. Stopping and scattering of relativistic electron beams in dense plasmas and requirements for fast ignition. Plasma Phys. Controlled Fusion, 51, 015016(2008).

    [24] D. C.Joy. Monte Carlo Modeling for Electron Microscopy and Microanalysis(1995).

    [25] P.Andreo, A.Brahme. Restricted energy-loss straggling and multiple scattering of electrons in mixed Monte Carlo procedures. Radiat. Res., 100, 16-29(1984).

    [26] K.Heinrich, E. R.Krefting, L.Reimer, D. N. H.Yakowitz. The effect of scattering models on the results of Monte Carlo calculations. Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy, 45-60(1976).

    [27] J.Baró, J. M.Fernández-Varea, R.Mayol, F.Salvat. On the theory and simulation of multiple elastic scattering of electrons. Nucl. Instrum. Methods Phys. Res., Sect. B, 73, 447-473(1993).

    [29] S.Goudsmit, J. L.Saunderson. Multiple scattering of electrons. Phys. Rev., 57, 24-29(1940).

    [30] S.Goudsmit, J. L.Saunderson. Multiple scattering of electrons. II. Phys. Rev., 58, 36-42(1940).

    [31] H. W.Lewis. Multiple scattering in an infinite medium. Phys. Rev., 78, 526-529(1950).

    [32] R.Betti, A. A.Solodov. Stopping power and range of energetic electrons in dense plasmas of fast-ignition fusion targets. Phys. Plasmas, 15, 042707(2008).

    [33] J. D.Jackson. Classical Electrodynamics(1975).

    [34] R. M.More. Processes in non ideal plasmas, 135-215(1986).

    [35] G.Wentzel. Zwei Bemerkungen über die Zerstreuung korpuskularer Strahlen als Beugungserscheinung. Z. Phys., 40, 590-593(1926).

    [36] H. H.Anderson, M. J.Berger, H.Bichsel, J. A.Dennis, M.Inokuti, D.Powers, S. M.Seltzer, J. E.Turner. Report 37.

    [38] L.Antonelli, D.Batani, O.Renner, M.?míd. Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy. Plasma Phys. Controlled Fusion, 58, 075007(2016).

    [39] F. N.Beg, T.D?ppner, S. H.Glenzer, L. C.Jarrott, O. L.Landen, C.McGuffey, H. S.McLean, P. M.Nilson, P. K.Patel, H.Sawada, C.Sorce, R. B.Stephens, C.Stoeckl, W.Theoboald, M. S.Wei. Calibration and characterization of a highly efficient spectrometer in von Hamos geometry for 7-10 keV x-rays. Rev. Sci. Instrum., 88, 043110(2017).

    [40] M. H.Chen, D. E.Cullen, J. H.Hubbell, S. T.Perkins, J.Rathkopf, J.Scofield. Tables and graphs of atomic subshell and relaxation data derived from the LLNL evaluated atomic data library (EADL), Z = 1–100(1991).

    [41] A.Jablonski, X.Llovet, C. J.Powell, F.Salvat. Cross sections for inner-shell ionization by electron impact. J. Phys. Chem. Ref. Data, 43, 013102(2014).

    [42] L.Antonelli, D.Batani, G.Boutoux, A.Cola?tis, G.Duchateau, Y.Maheut, P.Nicola?, X.Ribeyre, V.Tikhonchuk. Coupled hydrodynamic model for laser-plasma interaction and hot electron generation. Phys. Rev. E, 92, 041101(2015).

    [43] R.Betti, C. D.Zhou. Hydrodynamic relations for direct-drive fast-ignition and conventional inertial confinement fusion implosions. Phys. Plasmas, 14, 072703(2007).

    [44] F.Baffigi, D.Batani, S.Baton, A.Casner, A.Cola?tis, G.Cristoforetti, L. A.Gizzi, M.Koenig, P.Koester, L.Labateet?al.. Bremsstrahlung cannon design for shock ignition relevant regime. Rev. Sci. Instrum., 92, 013501(2021).

    [45] A.Tentori. Experimental and theoretical study of hot electrons in the context of the shock ignition approach to inertial confinement fusion(2022).

    Tools

    Get Citation

    Copy Citation Text

    A. Tentori, A. Colaïtis, D. Batani. 3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion. Part II[J]. Matter and Radiation at Extremes, 2022, 7(6): 065903

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Inertial Confinement Fusion Physics

    Received: Jun. 16, 2022

    Accepted: Oct. 12, 2022

    Published Online: Dec. 15, 2022

    The Author Email: Tentori A. (alessandro.tentori@mail.polimi.it)

    DOI:10.1063/5.0103632

    Topics