Journal of Synthetic Crystals, Volume. 49, Issue 11, 1970(2020)

Progress on GaN Single Crystal Substrate Grown by Hydride Vapor Phase Epitaxy

ZHANG Yumin1...2,*, WANG Jianfeng1,2, CAI Demin2, XU Yu1,2, WANG Mingyue1,2, HU Xiaojian1,2, XU Lin2, and XU Ke12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(106)

    [1] [1] Harima H. Properties of GaN and related compounds studied by means of Raman scattering[J]. Journal of Physics: Condensed Matter, 2002, 14(38): R967R993.

    [2] [2] Lee M, Ahn C W, Vu T K O, et al. First observation of electronic trap levels in freestanding GaN crystals extracted from Si substrates by hydride vapour phase epitaxy[J]. Scientific Reports, 2019, 9: 7128.

    [3] [3] Lee W J, Park M S, Lee W J, et al. Characteristic comparison between GaN layer grown on cplane cone shape patterned sapphire substrate and planar cplane sapphire substrate by HVPE[J]. Journal of Crystal Growth, 2018, 493: 814.

    [4] [4] Maruska H P, Tietjen J J. The preparation and properties of vapordeposited singlecrystalline GaN[J]. Applied Physics Letters, 1969, 15(10): 327329.

    [5] [5] Detchprohm T, Hiramatsu K, Amano H, et al. H ydride vaporphase epitaxialgrowth of a highquality GaN film using a ZnO buffer layer[J]. Applied Physics Letters, 1992, 61(22): 26882690.

    [6] [6] Usui A, Sunakawa H, SakaI A, et al. Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy[J]. Japanese Journal of Applied Physics, 1997, 36(Part 2, No. 7B): L899L902.

    [7] [7] Fujito K, Kubo S C, Nagaoka H, et al. Bulk GaN crystals grown by HVPE[J]. Journal of Crystal Growth, 2009, 311(10): 30113014.

    [8] [8] Foronda H M, Romanov A E, Young E C, et al. Publisher's Note: “Curvature and bow of bulk GaN substrates”[J]. Journal of Applied Physics, 2016, 120(11): 119901.

    [9] [9] Yoshida T, Imanishi M, KitamurA T, et al. Development of GaN substrate with a large diameter and small orientation deviation[J]. Physica Status Solidi (b), 2017, 254(8): 1600671.

    [10] [10] Zhang L, Dai Yb, Wu Y Z, et al. Epitaxial growth of a selfseparated GaN crystal by using a novel high temperature annealing porous template[J]. Cryst. Eng. Comm, 2014, 16(38): 90639068.

    [11] [11] Su X J, Xu K, Xu Y, et al. Shockinduced brittle cracking in HVPEGaN processed by laser liftoff techniques[J]. Journal of Physics D Applied Physics, 2013, 46(20): 205103.

    [13] [13] Fleischmann S, Hagedorn S, Mogilatenko A, et al. Designing sapphire surface patterns to promote AlGaN overgrowth in hydride vapor phase epitaxy[J]. Semiconductor Science and Technology, 2020, 35(3): 035028.

    [14] [14] Xu K, Wang J F, Ren G Q. Progress in bulk GaN growth[J]. Chinese Physics B, 2015, 24(6): 520.

    [15] [15] Iso K, Ikeda H, MochizukI T, et al. High quality GaN crystal grown by hydride vaporphase epitaxy on SCAAT(TM)[J]. Applied Physics Express, 2020, 13(8): 085508.

    [16] [16] Fujikura, Hajime, Konno, et al. Hydridevaporphase epitaxial growth of highly pure GaN layers with smooth asgrown surfaces on freestanding GaN substrates[J]. Japanese Journal of Applied Physics, 2017, 56(8): 85503.1.

    [17] [17] Valente G, Cavallotti C, Masi M, et al. Reduced order model for the CVD of epitaxial silicon from silane and chlorosilanes[J]. Journal of Crystal Growth, 2001, 230(1/2): 247257.

    [18] [18] Fomin A V, Nikolaev A E, Nikitina I P, et al. Properties of Sidoped GaN layers grown by HVPE[J]. Physica Status Solidi (a), 2001, 188(1): 433437.

    [19] [19] Usui A, Sunakawa H, Kuroda N, et al. Recent progress in epitaxial lateral overgrowth technique for growing bulk GaN by HVPE[J]. Blue Laser and Light Emitting Diodes Ii, 1998: 1721.

    [20] [20] Oshima Y, Yoshida T, Eri T, et al. Thermal and electrical properties of highquality freestanding GaN wafers with high carrier concentration[J]. Physica Status Solidi C, 2007, 4(7): 22152218.

    [21] [21] Richter E, Hennig C, Zeimer U, et al. Ntype doping of HVPEgrown GaN using dichlorosilane[J]. Physica Status Solidi (a), 2006, 203(7): 16581662.

    [22] [22] Hofmann P, Roder C, Habel F, et al. Silicon doping of HVPE GaN bulkcrystals avoiding tensile strain generation[J]. Journal of Physics D, 2016, 49(7): 075502.

    [23] [23] Iwinska M, Sochacki T, Amilusik M, et al. Homoepitaxial growth of HVPEGaN doped with Si[J]. Journal of Crystal Growth, 2016, 456: 9196.

    [24] [24] Park H J, Kim H Y, Young Bae J, et al. Control of the free carrier concentrations in a Sidoped freestanding GaN grown by hydride vapor phase epitaxy[J]. Journal of Crystal Growth, 2012, 350(1): 8588.

    [25] [25] AbdelMotaleb I M, Korotkov R Y. Modeling of electron mobility in GaN materials[J]. Journal of Applied Physics, 2005, 97(9): 093715.

    [26] [26] Weimann N G, Eastman L F, Doppalapudi D, et al. Scattering of electrons at threading dislocations in GaN[J]. Journal of Applied Physics, 1998, 83(7): 36563659.

    [27] [27] Dadgar A, Veit P, Schulze F, et al. MOVPE growth of GaN on SiSubstrates and strain[J]. Thin Solid Films, 2007, 515(10): 43564361.

    [28] [28] Romanov A E, Speck J S. Stress relaxation in mismatched layers due to threading dislocation inclination[J]. Applied Physics Letters, 2003, 83(13): 25692571.

    [29] [29] Cantu P, Wu F, Waltereit P, et al. Role of inclined threading dislocations in stress relaxation in mismatched layers[J]. Journal of Applied Physics, 2005, 97(10): 103534.

    [30] [30] Romano L T, Van De Walle C G, Ager J W III, et al. Effect of Si doping on strain, cracking, and microstructure in GaN thin films grown by metalorganic chemical vapor deposition[J]. Journal of Applied Physics, 2000, 87(11): 77457752.

    [31] [31] Moram M A, Kappers M J, Massabuau F, et al. The effects of Si doping on dislocation movement and tensile stress in GaN films[J]. Journal of Applied Physics, 2011, 109(7): 073509.

    [32] [32] Follstaedt D M, Lee S R, Allerman A A, et al. Strain relaxation in AlGaN multilayer structures by inclined dislocations[J]. Journal of Applied Physics, 2009, 105(8): 083507.

    [33] [33] Fritze S, Dadgar A, Witte H, et al. High Si and Ge ntype doping of GaN dopinglimits and impact on stress[J]. Applied Physics Letters, 2012, 100(12): 122104.

    [34] [34] Markurt T, Lymperakis L, Neugebauer J, et al. Blocking growth by an electrically active subsurface layer: the effect of Si as an antisurfactant in the growth of GaN[J]. Physical Review Letters, 2013, 110(3): 036103.

    [35] [35] Gtz W, Kern R S, Chen C H, et al. Halleffect characterization of IIIV nitride semiconductors for high efficiency light emitting diodes[J]. Materials Science and Engineering: B, 1999, 59(1/2/3): 211217.

    [36] [36] Wieneke M, Witte H, Lange K, et al. Ge as a surfactant in metalorganic vapor phase epitaxy growth of aplane GaN exceeding carrier concentrations of 1020 cm3[J]. Applied Physics Letters, 2013, 103(1): 012103.

    [37] [37] Nenstiel C, Bügler M, Callsen G, et al. Germaniumthe superior dopant in ntype GaN[J]. Physica Status Solidi (RRL)Rapid Research Letters, 2015, 9(12): 716721.

    [38] [38] Iwinska M, Takekawa N, Ivanov V Y, et al. Crystal growth of HVPEGaN doped with germanium[J]. Journal of Crystal Growth, 2017, 480: 102107.

    [39] [39] Oshima Y, Yoshida T, Watanabe K, et al. Properties of Gedoped, highquality bulk GaN crystals fabricated by hydride vapor phase epitaxy[J]. Journal of Crystal Growth, 2010, 312(24): 35693573.

    [40] [40] Mikawa Y, Ishinabe T, Kagamitani Y, et al. Recent progress of large size and low dislocation bulk GaN growth[C]//SPIE OPTO. Proc SPIE 11280, Gallium Nitride Materials and Devices XV, San Francisco, California, USA. 2020, 1128: 1128002.

    [41] [41] Hofmann P, Krupinski M, Habel F, et al. Novel approach for ntype doping of HVPE gallium nitride with germanium[J]. Journal of Crystal Growth, 2016, 450: 6165.

    [42] [42] Richter E, Gridneva E, Weyers M, et al. Fedoping in hydride vaporphase epitaxy for semiinsulating gallium nitride[J]. Journal of Crystal Growth, 2016, 456: 97100.

    [43] [43] Kubota M, Onuma T, Ishihara Y, et al. Thermal stability of semiinsulating property of Fedoped GaN bulk films studied by photoluminescence and monoenergetic positron annihilation techniques[J]. Journal of Applied Physics, 2009, 105(8): 083542.

    [44] [44] Vaudo R P, Xu X P, Salant A, et al. Characteristics of semiinsulating, Fedoped GaN substrates[J]. Physica Status Solidi (a), 2003, 200(1): 1821.

    [45] [45] Zheng C C, Ning J Q, Wu Z P, et al. Effects of Fe doping on the strain and optical properties of GaN epilayers grown on sapphire substrates[J]. Rsc Advances, 2014, 4(98): 5543055434.

    [46] [46] Zhang Y M, Wang J F, Cai D M, et al. Growth and doping of bulk GaN by hydride vapor phase epitaxy[J]. Chinese Physics B, 2020, 29(2): 026104.

    [47] [47] Gladkov P, Humlíek J, Hulicius E, et al. Effect of Fe doping on optical properties of freestanding semiinsulating HVPE GaN∶Fe[J]. Journal of Crystal Growth, 2010, 312(8): 12051209.

    [48] [48] Fang Z Q, Claflin B, Look D C, et al. Deep centers in semiinsulating current topics in solid state physics Fedoped native GaN substrates grown by hydride vapour phase epitaxy[J]. Physica Status Solidi CCurrent Topics in Solid State Physics, 2008, 5(6):15081511.

    [49] [49] JarasìceiuìNas K, Kadys A, Aleksiejuìnas R, et al. Optical nonlinearities and carrier dynamics in semiinsulating crystals[J]. Physica Status Solidi (c), 2009, 6(12): 28462848.

    [50] [50] Fang Y, Wu X, Yang J, et al. Effect of Fedoping on nonlinear optical responses and carrier trapping dynamics in GaN single crystals[J]. Applied Physics Letters, 2015, 107(5): 051901.

    [51] [51] Khromov S, Hemmingsson C, Monemar B, et al. Optical properties of Cdoped bulk GaN wafers grown by halide vapor phase epitaxy[J]. Journal of Applied Physics, 2014, 116(22): 223503.

    [52] [52] Iwinska M, Piotrzkowski R, LitwinStaszewska E, et al. Highly resistive Cdoped hydride vapor phase epitaxyGaN grown on ammonothermally crystallized GaN seeds[J]. Applied Physics Express, 2017, 10(1): 011003.

    [53] [53] Richter E, Beyer F C, Zimmermann F, et al. Growth and properties of intentionally carbondoped GaN layers[J]. Crystal Research and Technology, 2020, 55(2): 1900129.

    [54] [54] Bockowski M, Iwinska M, Amilusik M, et al. Doping in bulk HVPEGaN grown on native seedshighly conductive and semiinsulating crystals[J]. Journal of Crystal Growth, 2018, 499: 17.

    [55] [55] Zvanut M E, Paudel S, Glaser E R, et al. Incorporation of carbon in freestanding HVPEgrown GaN substrates[J]. Journal of Electronic Materials, 2019, 48(4): 22262232.

    [56] [56] Piotrzkowski R, Zajac M, LitwinStaszewska E, et al. Selfcompensation of carbon in HVPEGaN: C[J]. Applied Physics Letters, 2020, 117(1): 012106.

    [57] [57] Puzyrev Y S, Schrimpf R D, Fleetwood D M, et al. Role of Fe impurity complexes in the degradation of GaN/AlGaN highelectronmobility transistors[J]. Applied Physics Letters, 2015, 106(5): 053505.

    [58] [58] Axelsson O, Billstrom N, Rorsman N, et al. Impact of trapping effects on the recovery time of GaN based low noise amplifiers[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(1): 3133.

    [59] [59] Oshimura Y, Takeda K, Sugiyama T, et al. AlGaN/GaN HFETs on Fedoped GaN substrates[J]. Physica Status Solidi C, 2010, 7(7/8): 19741976.

    [60] [60] Martin G M, Farges J P, Jacob G, et al. Compensation mechanisms in GaAs[J]. Journal of Applied Physics, 1980, 51(5): 28402852.

    [61] [61] Jenny J R, Malta D P, Müller S G, et al. Highpurity semiinsulating 4HSiC for microwave device applications[J]. Journal of Electronic Materials, 2003, 32(5): 432436.

    [62] [62] Kizilyalli I C, Edwards A P, Aktas O, et al. Vertical power pn diodes based on bulk GaN[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 414422.

    [63] [63] Polyakov A Y, Smirnov N B, Govorkov A V, et al. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps[J]. Journal of Applied Physics, 2014, 115(18): 183706.

    [64] [64] Feltin E, Beaumont B, Vennéguès P, et al. Epitaxial lateral overgrowth of GaN on silicon (111)[J]. Physica Status Solidi (a), 2001, 188(2): 733737.

    [65] [65] Beaumont B, Bousquet V, Vennéguès P, et al. A twostep method for epitaxial lateral overgrowth of GaN[J]. Physica Status Solidi (a), 1999, 176(1): 567571.

    [66] [66] Sakai A, Sunakawa H, Usui A. Transmission electron microscopy of defects in GaN films formed by epitaxial lateral overgrowth[J]. Applied Physics Letters, 1998, 73(4): 481483.

    [67] [67] Moram M A, Kappers M J, Barber Z H, et al. Growth of low dislocation density GaN using transition metal nitride masking layers[J]. Journal of Crystal Growth, 2007, 298: 268271.

    [68] [68] Chiu C H, Yen H H, Chao C L, et al. Nanoscale epitaxial lateral overgrowth of GaNbased lightemitting diodes on a SiO2 nanorodarray patterned sapphire template[J]. Applied Physics Letters, 2008, 93(8): 081108.

    [69] [69] Motoki K, Okahisa T, Hirota R, et al. Dislocation reduction in GaN crystal by advancedDEEP[J]. Journal of Crystal Growth, 2007, 305(2): 377383.

    [70] [70] Liu J Q, Huang J, Gong X J, et al. A practical route towards fabricating GaN nanowire arrays[J]. CrystEngComm, 2011, 13(19): 5929.

    [71] [71] Fujikura H, Konno T, Suzuki T, et al. Macrodefectfree, large, and thick GaN bulk crystals for highquality 26 in. GaN substrates by hydride vapor phase epitaxy with hardness control[J]. Japanese Journal of Applied Physics, 2018, 57(6): 065502.

    [72] [72] Tanikawa T, Ohnishi K, Kanoh M, et al. Threedimensional imaging of threading dislocations in GaN crystals using twophoton excitation photoluminescence[J]. Applied Physics Express, 2018, 11(3): 031004.

    [73] [73] Kokubo N, Tsunooka Y, Fujie F, et al. Nondestructive visualization of threading dislocations in GaN by micro raman mapping[J]. Japanese Journal of Applied Physics, 2019, 58: SCCB06.

    [74] [74] Zhang M, Cai D M, Zhang Y M, et al. Investigation of the properties and formation process of a peculiar Vpit in HVPEgrown GaN film[J]. Materials Letters, 2017, 198: 1215.

    [75] [75] Sang L W, Ren B, Sumiya M, et al. Initial leakage current paths in the verticaltype GaNonGaN Schottky barrier diodes[J]. Applied Physics Letters, 2017, 111(12): 122102.

    [76] [76] Le L C, Zhao D G, Jiang D S, et al. Carriers capturing of Vdefect and its effect on leakage current and electroluminescence in InGaNbased lightemitting diodes[J]. Applied Physics Letters, 2012, 101(25): 252110.

    [77] [77] Montes B M, Hodges C, Uren M J, et al. On the link between electroluminescence, gate current leakage, and surface defects in AlGaN/GaN high electron mobility transistors upon offstate stress[J]. Applied Physics Letters, 2012, 101(3): 033508.

    [78] [78] Zhang Y M, Wang J F, Su X J, et al. Investigation of pits in Gedoped GaN grown by HVPE[J]. Japanese Journal of Applied Physics, 2019, 58(12): 120910.

    [79] [79] ucznik B, Pastuszka B, Weyher J L, et al. Bulk GaN crystals and wafers grown by HVPE without intentional doping[J]. Physica Status Solidi C, 2009, 6(S2): S297S300.

    [80] [80] Voronenkov V, Bochkareva N, Gorbunov R, et al. Nature of Vshaped defects in GaN[J]. Japanese Journal of Applied Physics, 2013, 52(8S): 08 JE14.

    [81] [81] Zhang Y M, Wang J F, Zheng S N, et al. Optical and electrical characterizations of the Vshaped pits in Fedoped bulk GaN[J]. Applied Physics Express, 2019, 12(7): 074002.

    [82] [82] Cruz S C, Keller S, Mates T E, et al. Crystallographic orientation dependence of dopant and impurity incorporation in GaN films grown by metalorganic chemical vapor deposition[J]. Journal of Crystal Growth, 2009, 311(15): 38173823.

    [83] [83] Nomoto K, Hatakeyama Y, Katayose H, et al. Over 1.0 kV GaN pn junction diodes on freestanding GaN substrates[J]. Physica Status Solidi (a), 2011, 208(7): 15351537.

    [84] [84] Kizilyalli I C, Prunty T, Aktas O. 4kV and 2.8m Omegacm(2) vertical GaN pn diodes with low leakage currents[J]. IEEE Electron Device Letters, 2015, 36(10): 10731075.

    [85] [85] Fu H Q, Zhang X D, Fu K, et al. Nonpolar vertical GaNonGaN pn diodes grown on freestanding (10(1)overbaro) mplane GaN substrates[J]. Applied Physics Express, 2018, 11(11): 111003.

    [86] [86] Kizilyalli I C, Edwards A P, Nie H, et al. 400A (pulsed) vertical GaN pn diode with breakdown voltage of 700 V[J]. IEEE Electron Device Letters, 2014, 35(6): 654656.

    [87] [87] Sun Y, Kang X W, Zheng Y K, et al. Review of the recent progress on GaNbased vertical power Schottky barrier diodes (SBDs) [J]. Electronics, 2019, 8(5): 575.

    [88] [88] Saitoh Y, Sumiyoshi K, Okada M, et al. Extremely low onresistance and high breakdown voltage observed in vertical GaN Schottky barrier diodes with highmobility drift layers on lowdislocationdensity GaN substrates[J]. Applied Physics Express, 2010, 3(8): 081001.

    [89] [89] Liu Z R, Wang J F, Gu H, et al. Highvoltage vertical GaNonGaN Schottky barrier diode using fluorine ion implantation treatment[J]. AIP Advances, 2019, 9(5): 055016.

    [90] [90] Wang W F, Wang J F, Zhang Y M, et al. Fabrication and characterization of vertical GaN Schottky barrier diodes with boronimplanted termination[J]. Chinese Physics B, 2020, 29(4): 047305.

    [91] [91] Gu H, Hu C, Wang J L, et al. Vertical GaN Schottky barrier diodes on Gedoped freestanding GaN substrates[J]. Journal of Alloys and Compounds, 2019, 780: 476481.

    [92] [92] Zhang Y H, Liu Z H, TADJER M J, et al. Vertical GaN junction barrier Schottky rectifiers by selective ion implantation[J]. IEEE Electron Device Letters, 2017, 38(8): 10971100.

    [93] [93] Koehler A D, Anderson T J, Tadjer M J, et al. Vertical GaN junction barrier Schottky diodes by Mg implantation and activation annealing[C]//2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA). November 79, 2016, Fayetteville, AR, USA. IEEE, 2016: 344346.

    [94] [94] Zhang Y, Sun M, Liu Z, et al. Novel GaN trench MIS barrier Schottky rectifiers with implanted field rings[J]. 2016 IEEE International Electron Devices Meeting (IEDM), 2016: 10.2.110.2.4.

    [95] [95] Zhang Y H, Piedra D, Sun M, et al. Highperformance 500 V quasi and fullyvertical GaNonSi pn diodes[J]. IEEE Electron Device Letters, 2017, 38(2): 248251.

    [96] [96] Nakamura S, Senoh M, Nagahama S, et al. InGaNbased multiquantumwellstructure laser diodes[J]. Japanese Journal of Applied Physics Part 2Letters & Express Letters, 1996, 35(1B): L74L76.

    [97] [97] Nakamura S, Senoh M, Nagahama S I, et al. Blue InGaNbased laser diodes with an emission wavelength of 450 nm[J]. Applied Physics Letters, 2000, 76(1): 2224.

    [98] [98] Liu J P, Zhang L Q, Li D Y, et al. GaNbased blue laser diodes with 2.2 W of light output power under continuouswave operation[J]. IEEE Photonics Technology Letters, 2017, 29(24): 22032206.

    [99] [99] Miyoshi T, Yanamoto T, Kozaki T, et al. Recent status of white LEDs and nitride LDs[C]//Integrated Optoelectronic Devices 2008. Proc SPIE 6894, Gallium Nitride Materials and Devices III, San Jose, California, USA. 2008, 6894: 689414.

    [100] [100] Masui S, Nakatsu Y, Kasahara D, et al. Recent improvement in nitride lasers[C]//SPIE OPTO. Proc SPIE 10104, Gallium Nitride Materials and Devices XII, San Francisco, California, USA. 2017, 1010: 101041H.

    [101] [101] Liu J, Li Z, Zhang L, et al. Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region[J]. Applied Physics Express, 2014, 7(11): 111001.

    [102] [102] Tian A, Liu J, Zhang L, et al. Green laser diodes with low threshold current density via interface engineering of InGaN/GaN quantum well active region[J]. Optics Express, 2017, 25(1): 415421.

    [103] [103] Tajima J, Hikosaka T, Kuraguchi M, et al. Improvement of electrical characteristics in regrown AlGaN/GaN MOSFETs by suppression of the residual interface charge[J]. Journal of Crystal Growth, 2019, 509: 129132.

    [104] [104] Nie H, Diduck Q, Alvarez B, et al. 1.5kV and 2.2m Omegacm(2) vertical GaN transistors on bulkGaN substrates[J]. Ieee Electron Device Letters, 2014, 35(9): 939941.

    [105] [105] Koehler A D, Anderson T J, Khachatrian A, et al. High voltage GaN lateral photoconductive semiconductor switches[J]. Ecs Journal of Solid State Science and Technology, 2017, 6(11): S3099S3102.

    [106] [106] Fan Y, Liu Z, Xu G, et al. Surface acoustic waves in semiinsulating Fedoped GaN films grown by hydride vapor phase epitaxy[J]. Applied Physics Letters, 2014, 105(6): 062108.

    [107] [107] Gaubas E, Ceponis T, Deveikis L, et al. Study of neutron irradiated structures of ammonothermal GaN[J]. Journal of Physics D: Applied Physics, 2017, 50(13): 135102.

    CLP Journals

    [1] MENG Wenli, ZHANG Yumin, SUN Yuanhang, WANG Jianfeng, XU Ke. Influence of TiN and Ti Insertion Layer on Ohmic Contact Performance Between ITO and GaN[J]. Journal of Synthetic Crystals, 2023, 52(9): 1609

    [2] WU Yuanmeng, HU Junjie, WANG Miao, YI Juemin, ZHANG Yumin, WANG Jianfeng, XU Ke. Optical Anisotropy of Non-Polar Surfaces of Fe-Doped GaN Crystal[J]. Journal of Synthetic Crystals, 2022, 51(6): 996

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Yumin, WANG Jianfeng, CAI Demin, XU Yu, WANG Mingyue, HU Xiaojian, XU Lin, XU Ke. Progress on GaN Single Crystal Substrate Grown by Hydride Vapor Phase Epitaxy[J]. Journal of Synthetic Crystals, 2020, 49(11): 1970

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Jan. 26, 2021

    The Author Email: Yumin ZHANG (ymzhang2007@sinano.ac.cn)

    DOI:

    CSTR:32186.14.

    Topics