Journal of Synthetic Crystals, Volume. 49, Issue 11, 1970(2020)
Progress on GaN Single Crystal Substrate Grown by Hydride Vapor Phase Epitaxy
[1] [1] Harima H. Properties of GaN and related compounds studied by means of Raman scattering[J]. Journal of Physics: Condensed Matter, 2002, 14(38): R967R993.
[2] [2] Lee M, Ahn C W, Vu T K O, et al. First observation of electronic trap levels in freestanding GaN crystals extracted from Si substrates by hydride vapour phase epitaxy[J]. Scientific Reports, 2019, 9: 7128.
[3] [3] Lee W J, Park M S, Lee W J, et al. Characteristic comparison between GaN layer grown on cplane cone shape patterned sapphire substrate and planar cplane sapphire substrate by HVPE[J]. Journal of Crystal Growth, 2018, 493: 814.
[4] [4] Maruska H P, Tietjen J J. The preparation and properties of vapordeposited singlecrystalline GaN[J]. Applied Physics Letters, 1969, 15(10): 327329.
[5] [5] Detchprohm T, Hiramatsu K, Amano H, et al. H ydride vaporphase epitaxialgrowth of a highquality GaN film using a ZnO buffer layer[J]. Applied Physics Letters, 1992, 61(22): 26882690.
[6] [6] Usui A, Sunakawa H, SakaI A, et al. Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy[J]. Japanese Journal of Applied Physics, 1997, 36(Part 2, No. 7B): L899L902.
[7] [7] Fujito K, Kubo S C, Nagaoka H, et al. Bulk GaN crystals grown by HVPE[J]. Journal of Crystal Growth, 2009, 311(10): 30113014.
[8] [8] Foronda H M, Romanov A E, Young E C, et al. Publisher's Note: “Curvature and bow of bulk GaN substrates”[J]. Journal of Applied Physics, 2016, 120(11): 119901.
[9] [9] Yoshida T, Imanishi M, KitamurA T, et al. Development of GaN substrate with a large diameter and small orientation deviation[J]. Physica Status Solidi (b), 2017, 254(8): 1600671.
[10] [10] Zhang L, Dai Yb, Wu Y Z, et al. Epitaxial growth of a selfseparated GaN crystal by using a novel high temperature annealing porous template[J]. Cryst. Eng. Comm, 2014, 16(38): 90639068.
[11] [11] Su X J, Xu K, Xu Y, et al. Shockinduced brittle cracking in HVPEGaN processed by laser liftoff techniques[J]. Journal of Physics D Applied Physics, 2013, 46(20): 205103.
[13] [13] Fleischmann S, Hagedorn S, Mogilatenko A, et al. Designing sapphire surface patterns to promote AlGaN overgrowth in hydride vapor phase epitaxy[J]. Semiconductor Science and Technology, 2020, 35(3): 035028.
[14] [14] Xu K, Wang J F, Ren G Q. Progress in bulk GaN growth[J]. Chinese Physics B, 2015, 24(6): 520.
[15] [15] Iso K, Ikeda H, MochizukI T, et al. High quality GaN crystal grown by hydride vaporphase epitaxy on SCAAT(TM)[J]. Applied Physics Express, 2020, 13(8): 085508.
[16] [16] Fujikura, Hajime, Konno, et al. Hydridevaporphase epitaxial growth of highly pure GaN layers with smooth asgrown surfaces on freestanding GaN substrates[J]. Japanese Journal of Applied Physics, 2017, 56(8): 85503.1.
[17] [17] Valente G, Cavallotti C, Masi M, et al. Reduced order model for the CVD of epitaxial silicon from silane and chlorosilanes[J]. Journal of Crystal Growth, 2001, 230(1/2): 247257.
[18] [18] Fomin A V, Nikolaev A E, Nikitina I P, et al. Properties of Sidoped GaN layers grown by HVPE[J]. Physica Status Solidi (a), 2001, 188(1): 433437.
[19] [19] Usui A, Sunakawa H, Kuroda N, et al. Recent progress in epitaxial lateral overgrowth technique for growing bulk GaN by HVPE[J]. Blue Laser and Light Emitting Diodes Ii, 1998: 1721.
[20] [20] Oshima Y, Yoshida T, Eri T, et al. Thermal and electrical properties of highquality freestanding GaN wafers with high carrier concentration[J]. Physica Status Solidi C, 2007, 4(7): 22152218.
[21] [21] Richter E, Hennig C, Zeimer U, et al. Ntype doping of HVPEgrown GaN using dichlorosilane[J]. Physica Status Solidi (a), 2006, 203(7): 16581662.
[22] [22] Hofmann P, Roder C, Habel F, et al. Silicon doping of HVPE GaN bulkcrystals avoiding tensile strain generation[J]. Journal of Physics D, 2016, 49(7): 075502.
[23] [23] Iwinska M, Sochacki T, Amilusik M, et al. Homoepitaxial growth of HVPEGaN doped with Si[J]. Journal of Crystal Growth, 2016, 456: 9196.
[24] [24] Park H J, Kim H Y, Young Bae J, et al. Control of the free carrier concentrations in a Sidoped freestanding GaN grown by hydride vapor phase epitaxy[J]. Journal of Crystal Growth, 2012, 350(1): 8588.
[25] [25] AbdelMotaleb I M, Korotkov R Y. Modeling of electron mobility in GaN materials[J]. Journal of Applied Physics, 2005, 97(9): 093715.
[26] [26] Weimann N G, Eastman L F, Doppalapudi D, et al. Scattering of electrons at threading dislocations in GaN[J]. Journal of Applied Physics, 1998, 83(7): 36563659.
[27] [27] Dadgar A, Veit P, Schulze F, et al. MOVPE growth of GaN on SiSubstrates and strain[J]. Thin Solid Films, 2007, 515(10): 43564361.
[28] [28] Romanov A E, Speck J S. Stress relaxation in mismatched layers due to threading dislocation inclination[J]. Applied Physics Letters, 2003, 83(13): 25692571.
[29] [29] Cantu P, Wu F, Waltereit P, et al. Role of inclined threading dislocations in stress relaxation in mismatched layers[J]. Journal of Applied Physics, 2005, 97(10): 103534.
[30] [30] Romano L T, Van De Walle C G, Ager J W III, et al. Effect of Si doping on strain, cracking, and microstructure in GaN thin films grown by metalorganic chemical vapor deposition[J]. Journal of Applied Physics, 2000, 87(11): 77457752.
[31] [31] Moram M A, Kappers M J, Massabuau F, et al. The effects of Si doping on dislocation movement and tensile stress in GaN films[J]. Journal of Applied Physics, 2011, 109(7): 073509.
[32] [32] Follstaedt D M, Lee S R, Allerman A A, et al. Strain relaxation in AlGaN multilayer structures by inclined dislocations[J]. Journal of Applied Physics, 2009, 105(8): 083507.
[33] [33] Fritze S, Dadgar A, Witte H, et al. High Si and Ge ntype doping of GaN dopinglimits and impact on stress[J]. Applied Physics Letters, 2012, 100(12): 122104.
[34] [34] Markurt T, Lymperakis L, Neugebauer J, et al. Blocking growth by an electrically active subsurface layer: the effect of Si as an antisurfactant in the growth of GaN[J]. Physical Review Letters, 2013, 110(3): 036103.
[35] [35] Gtz W, Kern R S, Chen C H, et al. Halleffect characterization of IIIV nitride semiconductors for high efficiency light emitting diodes[J]. Materials Science and Engineering: B, 1999, 59(1/2/3): 211217.
[36] [36] Wieneke M, Witte H, Lange K, et al. Ge as a surfactant in metalorganic vapor phase epitaxy growth of aplane GaN exceeding carrier concentrations of 1020 cm3[J]. Applied Physics Letters, 2013, 103(1): 012103.
[37] [37] Nenstiel C, Bügler M, Callsen G, et al. Germaniumthe superior dopant in ntype GaN[J]. Physica Status Solidi (RRL)Rapid Research Letters, 2015, 9(12): 716721.
[38] [38] Iwinska M, Takekawa N, Ivanov V Y, et al. Crystal growth of HVPEGaN doped with germanium[J]. Journal of Crystal Growth, 2017, 480: 102107.
[39] [39] Oshima Y, Yoshida T, Watanabe K, et al. Properties of Gedoped, highquality bulk GaN crystals fabricated by hydride vapor phase epitaxy[J]. Journal of Crystal Growth, 2010, 312(24): 35693573.
[40] [40] Mikawa Y, Ishinabe T, Kagamitani Y, et al. Recent progress of large size and low dislocation bulk GaN growth[C]//SPIE OPTO. Proc SPIE 11280, Gallium Nitride Materials and Devices XV, San Francisco, California, USA. 2020, 1128: 1128002.
[41] [41] Hofmann P, Krupinski M, Habel F, et al. Novel approach for ntype doping of HVPE gallium nitride with germanium[J]. Journal of Crystal Growth, 2016, 450: 6165.
[42] [42] Richter E, Gridneva E, Weyers M, et al. Fedoping in hydride vaporphase epitaxy for semiinsulating gallium nitride[J]. Journal of Crystal Growth, 2016, 456: 97100.
[43] [43] Kubota M, Onuma T, Ishihara Y, et al. Thermal stability of semiinsulating property of Fedoped GaN bulk films studied by photoluminescence and monoenergetic positron annihilation techniques[J]. Journal of Applied Physics, 2009, 105(8): 083542.
[44] [44] Vaudo R P, Xu X P, Salant A, et al. Characteristics of semiinsulating, Fedoped GaN substrates[J]. Physica Status Solidi (a), 2003, 200(1): 1821.
[45] [45] Zheng C C, Ning J Q, Wu Z P, et al. Effects of Fe doping on the strain and optical properties of GaN epilayers grown on sapphire substrates[J]. Rsc Advances, 2014, 4(98): 5543055434.
[46] [46] Zhang Y M, Wang J F, Cai D M, et al. Growth and doping of bulk GaN by hydride vapor phase epitaxy[J]. Chinese Physics B, 2020, 29(2): 026104.
[47] [47] Gladkov P, Humlíek J, Hulicius E, et al. Effect of Fe doping on optical properties of freestanding semiinsulating HVPE GaN∶Fe[J]. Journal of Crystal Growth, 2010, 312(8): 12051209.
[48] [48] Fang Z Q, Claflin B, Look D C, et al. Deep centers in semiinsulating current topics in solid state physics Fedoped native GaN substrates grown by hydride vapour phase epitaxy[J]. Physica Status Solidi CCurrent Topics in Solid State Physics, 2008, 5(6):15081511.
[49] [49] JarasìceiuìNas K, Kadys A, Aleksiejuìnas R, et al. Optical nonlinearities and carrier dynamics in semiinsulating crystals[J]. Physica Status Solidi (c), 2009, 6(12): 28462848.
[50] [50] Fang Y, Wu X, Yang J, et al. Effect of Fedoping on nonlinear optical responses and carrier trapping dynamics in GaN single crystals[J]. Applied Physics Letters, 2015, 107(5): 051901.
[51] [51] Khromov S, Hemmingsson C, Monemar B, et al. Optical properties of Cdoped bulk GaN wafers grown by halide vapor phase epitaxy[J]. Journal of Applied Physics, 2014, 116(22): 223503.
[52] [52] Iwinska M, Piotrzkowski R, LitwinStaszewska E, et al. Highly resistive Cdoped hydride vapor phase epitaxyGaN grown on ammonothermally crystallized GaN seeds[J]. Applied Physics Express, 2017, 10(1): 011003.
[53] [53] Richter E, Beyer F C, Zimmermann F, et al. Growth and properties of intentionally carbondoped GaN layers[J]. Crystal Research and Technology, 2020, 55(2): 1900129.
[54] [54] Bockowski M, Iwinska M, Amilusik M, et al. Doping in bulk HVPEGaN grown on native seedshighly conductive and semiinsulating crystals[J]. Journal of Crystal Growth, 2018, 499: 17.
[55] [55] Zvanut M E, Paudel S, Glaser E R, et al. Incorporation of carbon in freestanding HVPEgrown GaN substrates[J]. Journal of Electronic Materials, 2019, 48(4): 22262232.
[56] [56] Piotrzkowski R, Zajac M, LitwinStaszewska E, et al. Selfcompensation of carbon in HVPEGaN: C[J]. Applied Physics Letters, 2020, 117(1): 012106.
[57] [57] Puzyrev Y S, Schrimpf R D, Fleetwood D M, et al. Role of Fe impurity complexes in the degradation of GaN/AlGaN highelectronmobility transistors[J]. Applied Physics Letters, 2015, 106(5): 053505.
[58] [58] Axelsson O, Billstrom N, Rorsman N, et al. Impact of trapping effects on the recovery time of GaN based low noise amplifiers[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(1): 3133.
[59] [59] Oshimura Y, Takeda K, Sugiyama T, et al. AlGaN/GaN HFETs on Fedoped GaN substrates[J]. Physica Status Solidi C, 2010, 7(7/8): 19741976.
[60] [60] Martin G M, Farges J P, Jacob G, et al. Compensation mechanisms in GaAs[J]. Journal of Applied Physics, 1980, 51(5): 28402852.
[61] [61] Jenny J R, Malta D P, Müller S G, et al. Highpurity semiinsulating 4HSiC for microwave device applications[J]. Journal of Electronic Materials, 2003, 32(5): 432436.
[62] [62] Kizilyalli I C, Edwards A P, Aktas O, et al. Vertical power pn diodes based on bulk GaN[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 414422.
[63] [63] Polyakov A Y, Smirnov N B, Govorkov A V, et al. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps[J]. Journal of Applied Physics, 2014, 115(18): 183706.
[64] [64] Feltin E, Beaumont B, Vennéguès P, et al. Epitaxial lateral overgrowth of GaN on silicon (111)[J]. Physica Status Solidi (a), 2001, 188(2): 733737.
[65] [65] Beaumont B, Bousquet V, Vennéguès P, et al. A twostep method for epitaxial lateral overgrowth of GaN[J]. Physica Status Solidi (a), 1999, 176(1): 567571.
[66] [66] Sakai A, Sunakawa H, Usui A. Transmission electron microscopy of defects in GaN films formed by epitaxial lateral overgrowth[J]. Applied Physics Letters, 1998, 73(4): 481483.
[67] [67] Moram M A, Kappers M J, Barber Z H, et al. Growth of low dislocation density GaN using transition metal nitride masking layers[J]. Journal of Crystal Growth, 2007, 298: 268271.
[68] [68] Chiu C H, Yen H H, Chao C L, et al. Nanoscale epitaxial lateral overgrowth of GaNbased lightemitting diodes on a SiO2 nanorodarray patterned sapphire template[J]. Applied Physics Letters, 2008, 93(8): 081108.
[69] [69] Motoki K, Okahisa T, Hirota R, et al. Dislocation reduction in GaN crystal by advancedDEEP[J]. Journal of Crystal Growth, 2007, 305(2): 377383.
[70] [70] Liu J Q, Huang J, Gong X J, et al. A practical route towards fabricating GaN nanowire arrays[J]. CrystEngComm, 2011, 13(19): 5929.
[71] [71] Fujikura H, Konno T, Suzuki T, et al. Macrodefectfree, large, and thick GaN bulk crystals for highquality 26 in. GaN substrates by hydride vapor phase epitaxy with hardness control[J]. Japanese Journal of Applied Physics, 2018, 57(6): 065502.
[72] [72] Tanikawa T, Ohnishi K, Kanoh M, et al. Threedimensional imaging of threading dislocations in GaN crystals using twophoton excitation photoluminescence[J]. Applied Physics Express, 2018, 11(3): 031004.
[73] [73] Kokubo N, Tsunooka Y, Fujie F, et al. Nondestructive visualization of threading dislocations in GaN by micro raman mapping[J]. Japanese Journal of Applied Physics, 2019, 58: SCCB06.
[74] [74] Zhang M, Cai D M, Zhang Y M, et al. Investigation of the properties and formation process of a peculiar Vpit in HVPEgrown GaN film[J]. Materials Letters, 2017, 198: 1215.
[75] [75] Sang L W, Ren B, Sumiya M, et al. Initial leakage current paths in the verticaltype GaNonGaN Schottky barrier diodes[J]. Applied Physics Letters, 2017, 111(12): 122102.
[76] [76] Le L C, Zhao D G, Jiang D S, et al. Carriers capturing of Vdefect and its effect on leakage current and electroluminescence in InGaNbased lightemitting diodes[J]. Applied Physics Letters, 2012, 101(25): 252110.
[77] [77] Montes B M, Hodges C, Uren M J, et al. On the link between electroluminescence, gate current leakage, and surface defects in AlGaN/GaN high electron mobility transistors upon offstate stress[J]. Applied Physics Letters, 2012, 101(3): 033508.
[78] [78] Zhang Y M, Wang J F, Su X J, et al. Investigation of pits in Gedoped GaN grown by HVPE[J]. Japanese Journal of Applied Physics, 2019, 58(12): 120910.
[79] [79] ucznik B, Pastuszka B, Weyher J L, et al. Bulk GaN crystals and wafers grown by HVPE without intentional doping[J]. Physica Status Solidi C, 2009, 6(S2): S297S300.
[80] [80] Voronenkov V, Bochkareva N, Gorbunov R, et al. Nature of Vshaped defects in GaN[J]. Japanese Journal of Applied Physics, 2013, 52(8S): 08 JE14.
[81] [81] Zhang Y M, Wang J F, Zheng S N, et al. Optical and electrical characterizations of the Vshaped pits in Fedoped bulk GaN[J]. Applied Physics Express, 2019, 12(7): 074002.
[82] [82] Cruz S C, Keller S, Mates T E, et al. Crystallographic orientation dependence of dopant and impurity incorporation in GaN films grown by metalorganic chemical vapor deposition[J]. Journal of Crystal Growth, 2009, 311(15): 38173823.
[83] [83] Nomoto K, Hatakeyama Y, Katayose H, et al. Over 1.0 kV GaN pn junction diodes on freestanding GaN substrates[J]. Physica Status Solidi (a), 2011, 208(7): 15351537.
[84] [84] Kizilyalli I C, Prunty T, Aktas O. 4kV and 2.8m Omegacm(2) vertical GaN pn diodes with low leakage currents[J]. IEEE Electron Device Letters, 2015, 36(10): 10731075.
[85] [85] Fu H Q, Zhang X D, Fu K, et al. Nonpolar vertical GaNonGaN pn diodes grown on freestanding (10(1)overbaro) mplane GaN substrates[J]. Applied Physics Express, 2018, 11(11): 111003.
[86] [86] Kizilyalli I C, Edwards A P, Nie H, et al. 400A (pulsed) vertical GaN pn diode with breakdown voltage of 700 V[J]. IEEE Electron Device Letters, 2014, 35(6): 654656.
[87] [87] Sun Y, Kang X W, Zheng Y K, et al. Review of the recent progress on GaNbased vertical power Schottky barrier diodes (SBDs) [J]. Electronics, 2019, 8(5): 575.
[88] [88] Saitoh Y, Sumiyoshi K, Okada M, et al. Extremely low onresistance and high breakdown voltage observed in vertical GaN Schottky barrier diodes with highmobility drift layers on lowdislocationdensity GaN substrates[J]. Applied Physics Express, 2010, 3(8): 081001.
[89] [89] Liu Z R, Wang J F, Gu H, et al. Highvoltage vertical GaNonGaN Schottky barrier diode using fluorine ion implantation treatment[J]. AIP Advances, 2019, 9(5): 055016.
[90] [90] Wang W F, Wang J F, Zhang Y M, et al. Fabrication and characterization of vertical GaN Schottky barrier diodes with boronimplanted termination[J]. Chinese Physics B, 2020, 29(4): 047305.
[91] [91] Gu H, Hu C, Wang J L, et al. Vertical GaN Schottky barrier diodes on Gedoped freestanding GaN substrates[J]. Journal of Alloys and Compounds, 2019, 780: 476481.
[92] [92] Zhang Y H, Liu Z H, TADJER M J, et al. Vertical GaN junction barrier Schottky rectifiers by selective ion implantation[J]. IEEE Electron Device Letters, 2017, 38(8): 10971100.
[93] [93] Koehler A D, Anderson T J, Tadjer M J, et al. Vertical GaN junction barrier Schottky diodes by Mg implantation and activation annealing[C]//2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA). November 79, 2016, Fayetteville, AR, USA. IEEE, 2016: 344346.
[94] [94] Zhang Y, Sun M, Liu Z, et al. Novel GaN trench MIS barrier Schottky rectifiers with implanted field rings[J]. 2016 IEEE International Electron Devices Meeting (IEDM), 2016: 10.2.110.2.4.
[95] [95] Zhang Y H, Piedra D, Sun M, et al. Highperformance 500 V quasi and fullyvertical GaNonSi pn diodes[J]. IEEE Electron Device Letters, 2017, 38(2): 248251.
[96] [96] Nakamura S, Senoh M, Nagahama S, et al. InGaNbased multiquantumwellstructure laser diodes[J]. Japanese Journal of Applied Physics Part 2Letters & Express Letters, 1996, 35(1B): L74L76.
[97] [97] Nakamura S, Senoh M, Nagahama S I, et al. Blue InGaNbased laser diodes with an emission wavelength of 450 nm[J]. Applied Physics Letters, 2000, 76(1): 2224.
[98] [98] Liu J P, Zhang L Q, Li D Y, et al. GaNbased blue laser diodes with 2.2 W of light output power under continuouswave operation[J]. IEEE Photonics Technology Letters, 2017, 29(24): 22032206.
[99] [99] Miyoshi T, Yanamoto T, Kozaki T, et al. Recent status of white LEDs and nitride LDs[C]//Integrated Optoelectronic Devices 2008. Proc SPIE 6894, Gallium Nitride Materials and Devices III, San Jose, California, USA. 2008, 6894: 689414.
[100] [100] Masui S, Nakatsu Y, Kasahara D, et al. Recent improvement in nitride lasers[C]//SPIE OPTO. Proc SPIE 10104, Gallium Nitride Materials and Devices XII, San Francisco, California, USA. 2017, 1010: 101041H.
[101] [101] Liu J, Li Z, Zhang L, et al. Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region[J]. Applied Physics Express, 2014, 7(11): 111001.
[102] [102] Tian A, Liu J, Zhang L, et al. Green laser diodes with low threshold current density via interface engineering of InGaN/GaN quantum well active region[J]. Optics Express, 2017, 25(1): 415421.
[103] [103] Tajima J, Hikosaka T, Kuraguchi M, et al. Improvement of electrical characteristics in regrown AlGaN/GaN MOSFETs by suppression of the residual interface charge[J]. Journal of Crystal Growth, 2019, 509: 129132.
[104] [104] Nie H, Diduck Q, Alvarez B, et al. 1.5kV and 2.2m Omegacm(2) vertical GaN transistors on bulkGaN substrates[J]. Ieee Electron Device Letters, 2014, 35(9): 939941.
[105] [105] Koehler A D, Anderson T J, Khachatrian A, et al. High voltage GaN lateral photoconductive semiconductor switches[J]. Ecs Journal of Solid State Science and Technology, 2017, 6(11): S3099S3102.
[106] [106] Fan Y, Liu Z, Xu G, et al. Surface acoustic waves in semiinsulating Fedoped GaN films grown by hydride vapor phase epitaxy[J]. Applied Physics Letters, 2014, 105(6): 062108.
[107] [107] Gaubas E, Ceponis T, Deveikis L, et al. Study of neutron irradiated structures of ammonothermal GaN[J]. Journal of Physics D: Applied Physics, 2017, 50(13): 135102.
Get Citation
Copy Citation Text
ZHANG Yumin, WANG Jianfeng, CAI Demin, XU Yu, WANG Mingyue, HU Xiaojian, XU Lin, XU Ke. Progress on GaN Single Crystal Substrate Grown by Hydride Vapor Phase Epitaxy[J]. Journal of Synthetic Crystals, 2020, 49(11): 1970
Category:
Received: --
Accepted: --
Published Online: Jan. 26, 2021
The Author Email: Yumin ZHANG (ymzhang2007@sinano.ac.cn)
CSTR:32186.14.