Optics and Precision Engineering, Volume. 32, Issue 8, 1227(2024)
Improving the lightweight VTG-YOLOv7-tiny for steel surface defect detection
[1] [1] 曹义亲, 伍铭林, 徐露. 基于改进YOLOv5算法的钢材表面缺陷检测[J]. 图学学报, 2023, 44(2): 335-345.CAOY Q, WUM L, XUL. Steel surface defect detection based on improved YOLOv5 algorithm[J]. Journal of Graphics, 2023, 44(2): 335-345.(in Chinese)
[2] L S ZHOU, L M LIANG, X Q SHENG. GA-Net: ghost convolution adaptive fusion skin lesion segmentation network. Computers in Biology and Medicine, 164, 107273(2023).
[3] [3] 郭峰, 朱启兵, 黄敏, 等. 基于改进YOLOV4的陶瓷基板瑕疵检测[J]. 光学 精密工程, 2022, 30(13): 1631-1641. doi: 10.37188/OPE.20223013.1631GUOF, ZHUQ B, HUANGM, et al. Defect detection in ceramic substrate based on improved YOLOV4[J]. Opt. Precision Eng., 2022, 30(13): 1631-1641.(in Chinese). doi: 10.37188/OPE.20223013.1631
[4] [4] 陈亚芳, 廖飞, 黄新宇, 等. 多尺度YOLOv5的太阳能电池缺陷检测[J]. 光学 精密工程, 2023, 31(12): 1804-1815. doi: 10.37188/OPE.20233112.1804CHENY F, LIAOF, HUANGX Y, et al. Multi-scale YOLOv5 for solar cell defect detection[J]. Opt. Precision Eng., 2023, 31(12): 1804-1815.(in Chinese). doi: 10.37188/OPE.20233112.1804
[5] [5] 李少波, 杨静, 王铮, 等. 缺陷检测技术的发展与应用研究综述[J]. 自动化学报, 2020, 46(11): 2319-2336. doi: 10.16383/j.aas.c180538LIS B, YANGJ, WANGZ, et al. Review of development and application of defect detection technology[J]. Acta Automatica Sinica, 2020, 46(11): 2319-2336.(in Chinese). doi: 10.16383/j.aas.c180538
[6] [6] 朱玉龙, 赵迎松, 方阳, 等. 孔边裂纹的旋转涡流检测[J]. 中国机械工程, 2023, 34(8): 883-891. doi: 10.3969/j.issn.1004-132X.2023.08.001ZHUY L, ZHAOY S, FANGY, et al. Rotating eddy current testing for inspection of cracks at hole edge[J]. China Mechanical Engineering, 2023, 34(8): 883-891.(in Chinese). doi: 10.3969/j.issn.1004-132X.2023.08.001
[7] R GIRSHICK. Fast R-CNN, 1440-1448(2015).
[8] K M HE, G GKIOXARI, P DOLLÁR et al. Mask R-CNN, 2980-2988(2017).
[9] J REDMON, S DIVVALA, R GIRSHICK et al. You only look once: unified, real-time object detection, 779-788(2016).
[10] M HUSSAIN. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection. Machines, 11, 677(2023).
[11] H M QIAN, H L WANG, S FENG et al. FESSD: SSD target detection based on feature fusion and feature enhancement. Journal of Real-Time Image Processing, 20, 2(2023).
[12] T Y LIN, P GOYAL, R GIRSHICK et al. Focal loss for dense object detection, 2999-3007(2017).
[13] T Y LIN, P DOLLÁR, R GIRSHICK et al. Feature pyramid networks for object detection, 936-944(2017).
[14] S LIU, L QI, H F QIN et al. Path aggregation network for instance segmentation, 8759-8768(2018).
[15] [15] 张利红, 蔡敬菊. 基于轻量化Yolov5算法的目标检测系统[J]. 计算机技术与发展, 2022, 32(11): 134-139. doi: 10.3969/j.issn.1673-629X.2022.11.020ZHANGL H, CAIJ J. Target detection system based on lightweight Yolov5 algorithm[J]. Computer Technology and Development, 2022, 32(11): 134-139.(in Chinese). doi: 10.3969/j.issn.1673-629X.2022.11.020
[16] [16] 马燕婷, 赵红东, 阎超, 等. 改进YOLOv5网络的带钢表面缺陷检测方法[J]. 电子测量与仪器学报, 2022, 36(8): 150-157. doi: 10.3390/met13081439MAY T, ZHAOH D, YANC, et al. Strip steel surface defect detection method by improved YOLOv5 network[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(8): 150-157.(in Chinese). doi: 10.3390/met13081439
[17] [17] 李成跃, 姚剑敏, 林志贤, 等. 基于改进YOLO轻量化网络的目标检测方法[J]. 激光与光电子学进展, 2020, 57(14): 141003. doi: 10.3788/lop57.141003LIC Y, YAOJ M, LINZ X, et al. Object detection method based on improved YOLO lightweight network[J]. Laser & Optoelectronics Progress, 2020, 57(14): 141003.(in Chinese). doi: 10.3788/lop57.141003
[18] [18] 周彦, 孟江南, 王冬丽, 等. 基于多尺度轻量化注意力的钢材缺陷检测[J]. 控制与决策, 2024, 39(3): 901-909.ZHOUY, MENGJ N, WANGD L, et al. Steel defect detection based on multi-scale lightweight attention[J]. Control and Decision, 2024, 39(3): 901-909.(in Chinese)
[19] J W LIAN, J H HE, Y NIU et al. Fast and accurate detection of surface defect based on improved YOLOv4. Assembly Automation, 42, 134-146(2022).
[20] K HAN, Y H WANG, Q TIAN et al. GhostNet: more features from cheap operations, 1577-1586(2020).
[21] [21] 徐正军, 张强, 许亮. 一种基于改进YOLOv5s-Ghost网络的交通标志识别方法[J]. 光电子·激光, 2023, 34(1): 52-61.XUZ J, ZHANGQ, XUL. A traffic sign recognition method based on improved YOLOv5s-Ghost network[J]. Journal of Optoelectronics·Laser, 2023, 34(1): 52-61.(in Chinese)
[22] C Y WANG, A BOCHKOVSKIY, H Y M LIAO. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, 7464-7475(2023).
[25] D MISRA, T NALAMADA, A U ARASANIPALAI et al. Rotate to attend: convolutional triplet attention module, 3138-3147(2021).
[26] J HU, L SHEN, G SUN. Squeeze-and-excitation networks, 7132-7141(2018).
[27] J PARK, J Y LEE et al.
[29] Q B HOU, D Q ZHOU, J S FENG. Coordinate attention for efficient mobile network design, 13708-13717(2021).
Get Citation
Copy Citation Text
Liming LIANG, Pengwei LONG, Yao FENG, Baohe LU. Improving the lightweight VTG-YOLOv7-tiny for steel surface defect detection[J]. Optics and Precision Engineering, 2024, 32(8): 1227
Category:
Received: Oct. 16, 2023
Accepted: --
Published Online: May. 29, 2024
The Author Email: LONG Pengwei (2637018663@qq.com)