Optics and Precision Engineering, Volume. 31, Issue 13, 1871(2023)
Fabrication and photoelectric properties of self-powered ultraviolet detector based on WO3 nanosheets
[1] FANG Y J, DONG Q F, SHAO Y CH et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination[J]. Nature Photonics, 9, 679-686(2015).
[2] KUMAR A G, LI X J, DU Y et al. UV-photodetector based on heterostructured ZnO/(Ga,Ag)-co-doped ZnO nanorods by cost-effective two-step process[J]. Applied Surface Science, 509, 144770(2020).
[3] MOON T H, JEONG M C, LEE W et al. The fabrication and characterization of ZnO UV detector[J]. Applied Surface Science, 240, 280-285(2005).
[4] PANG J B, PENG S A, HOU C Y et al. Applications of graphene in five senses, nervous system, and artificial muscles[J]. ACS Sensors, 8, 482-514(2023).
[5] PANG J B, PENG S A, HOU C Y et al. Applications of MXenes in human-like sensors and actuators[J]. Nano Research, 16, 5767-5795(2023).
[6] LI D B, SUN X J, SONG H et al. Realization of a high-performance GaN UV detector by nanoplasmonic enhancement[J]. Advanced Materials, 24, 845-849(2012).
[7] SCIUTO A, ROCCAFORTE F, DI FRANCO S et al. Photocurrent gain in 4H-SiC interdigit Schottky UV detectors with a thermally grown oxide layer[J]. Applied Physics Letters, 90, 223507(2007).
[8] LIU G H, ZHANG M, ZHANG D ZH et al. Effects of growth substrates on the morphologies of TiO2 nanowire arrays and the performance of assembled UV detectors[J]. Applied Surface Science, 315, 55-58(2014).
[9] BAI ZH M, YAN X Q, CHEN X et al. ZnO nanowire array ultraviolet photodetectors with self-powered properties[J]. Current Applied Physics, 13, 165-169(2013).
[10] HUANG K, ZHANG Q. Giant persistent photoconductivity of the WO3 nanowires in vacuum condition[J]. Nanoscale Researsh Letters, 6, 1-5(2010).
[11] LIU K, DAI B, RALCHENKO V et al. Single crystal diamond UV detector with a groove-shaped electrode structure and enhanced sensitivity[J]. Sensors and Actuators A: Physical, 259, 121-126(2017).
[12] HUANG K, ZHANG Q, YANG F et al. Ultraviolet photoconductance of a single hexagonal WO3 nanowire[J]. Nano Research, 3, 281-287(2010).
[13] LI L, ZHANG Y, FANG X S et al. WO3 nanowires on carbon papers: electronic transport, improved ultraviolet-light photodetectors and excellent field emitters[J]. Journal of Materials Chemistry, 21, 6525-6530(2011).
[14] HE Z Y, LIU Q, HOU H L et al. Tailored electrospinning of WO3 nanobelts as efficient ultraviolet photodetectors with photo-dark current ratios up to 1000[J]. ACS Applied Materials & Interfaces, 7, 10878-10885(2015).
[15] LIU J Z, ZHONG M Z, LI J B et al. Few-layer WO3 nanosheets for high-performance UV-photodetectors[J]. Materials Letters, 148, 184-187(2015).
[16] HUO N J, YANG S X, WEI Z M et al. Synthesis of WO3 nanostructures and their ultraviolet photoresponse properties[J]. Journal of Materials Chemistry C, 1, 3999-4007(2013).
[17] KIM Y, LEE S H, JEONG S et al. Conversion of WO3 thin films into self-crosslinked nanorods for large-scale ultraviolet detection[J]. RSC Advances, 10, 14147-14153(2020).
[18] SHAO D L, YU M P, LIAN J et al. An ultraviolet photodetector fabricated from WO3 nanodiscs/reduced graphene oxide composite material[J]. Nanotechnology, 24, 295701(2013).
[19] HUANG Y W, YU Q J, WANG J Z et al. Plasmon-enhanced self-powered UV photodetectors assembled by incorporating Ag@SiO2 core-shell nanoparticles into TiO2 nanocube photoanodes[J]. ACS Sustainable Chemistry & Engineering, 6, 438-446(2018).
[20] ALAIE Z, NEJAD S M, YOUSEFI M H et al. Recent advances in ultraviolet photodetectors[J]. Materials Science in Semiconductor Processing, 29, 16-55(2015).
[21] WANG Y D, TIAN W, CHEN L et al. Three-dimensional WO3 nanoplate/Bi2S3 nanorod heterojunction as a highly efficient photoanode for improved photoelectrochemical water splitting[J]. ACS Applied Materials & Interfaces, 9, 40235-40243(2017).
[22] ZHANG X H, LU X H, SHEN Y Q et al. Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis[J]. Chemical Communications, 47, 5804-5806(2011).
[23] ZHENG H D, JIAN ZH O, STRANO M S et al. Nanostructured tungsten oxide - properties, synthesis, and applications[J]. Advanced Functional Materials, 21, 2175-2196(2011).
[24] ZHOU J Y, CHEN L L, WANG Y Q et al. An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors[J]. Nanoscale, 8, 50-73(2016).
[25] CAO Y, QU P, WANG C G et al. Epitaxial growth of vertically aligned antimony selenide nanorod arrays for heterostructure based self-powered photodetector[J]. Advanced Optical Materials, 10, 2200816(2022).
[26] XIE Y R, WEI L, WEI G D et al. A self-powered UV photodetector based on TiO2 nanorod arrays[J]. Nanoscale Research Letters, 8, 188(2013).
[27] LI Q H, WEI L, XIE Y R et al. ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector[J]. Nanoscale Research Letters, 8, 1-7(2013).
[28] REDDY Y A K, AJITHA B, REDDEPPA M et al. Improvement of UV photodetector properties of reactively sputtered TiO2-
[29] CHEN D, WEI L, MENG L P et al. Visible-blind quasi-solid-state UV detector based on SnO2-TiO2 nanoheterostructure arrays[J]. Journal of Alloys and Compounds, 751, 56-61(2018).
[30] PRAVEEN S, VEERALINGAM S, BADHULIKA S. A flexible self-powered UV photodetector and optical UV filter based on β-Bi2O3/SnO2 quantum dots Schottky heterojunction[J]. Advanced Materials Interfaces, 8, 2100373(2021).
[31] LI X D, GAO C T, DUAN H G et al. Nanocrystalline TiO2 film based photoelectrochemical cell as self-powered UV-photodetector[J]. Nano Energy, 1, 640-645(2012).
Get Citation
Copy Citation Text
Jianhua ZHU, Qicheng ZHOU, Liping HAO, Yu SUN, Shiyong GAO. Fabrication and photoelectric properties of self-powered ultraviolet detector based on WO3 nanosheets[J]. Optics and Precision Engineering, 2023, 31(13): 1871
Category: Modern Applied Optics
Received: Dec. 28, 2022
Accepted: --
Published Online: Jul. 26, 2023
The Author Email: Shiyong GAO (gaoshiyong@hit.edu.cn)