Laser & Optoelectronics Progress, Volume. 55, Issue 10, 100006(2018)

Research Progress in Single-Crystal Fiber Amplifiers

Wang Yalan and Wang Qing*
Author Affiliations
  • [in Chinese]
  • show less
    References(42)

    [1] [1] Raciukaitis G, Brikas M, Geys P, et al. Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high [J]. Journal of Laser Micro/Nanoengineering, 2009, 4(3): 186-191.

    [2] [2] Neuenschwander B, Bucher G F, Nussbaum C, et al. Processing of metals and dielectric materials with ps-laser pulses: results, strategies, limitations and needs[J].Proceedings of SPIE, 2010, 7584: 75840R.

    [3] [3] Yang D D, Cai J H. Research progress of micro-nano fabrication by picosecond laser[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010004.

    [4] [4] Bian X W, Chen M, Li G. Study on machining of sapphire by 355 nm nanosecond and 1064 nm picosecond laser[J]. Laser & Optoelectronics Progress, 2016, 53(5): 051404.

    [5] [5] Martial I, Balembois F, Didierjean J, et al. Nd∶YAG single-crystal fiber as high peak power amplifier of pulses below one nanosecond[J]. Optics Express, 2011, 19(12): 11667-11679.

    [6] [6] Eidam T, Hanf S, Andersen T V, et al. 830 W average power femtosecond fiber CPA system[J]. Advanced Solid, 2010, 35(2): 94-96.

    [7] [7] Jansen F, Stutzki F, Eidam T, et al. Yb-doped large pitch fiber with 105 μm mode field diameter[C]∥Optical Fiber Communication Conference, OSA, 2011: OTuC5.

    [8] [8] Han Q, Ning J P, Zhou L, et al. Impact of ASE on high power Er/Yb co-doped fiber pulse amplifiers[J]. Laser Technology, 2009, 33(5): 541-544.

    [9] [9] Luo Y, Wang X L, Zhang H W, et al. Amplified spontaneous emission characteristics and locations of high temperature vulnerable point in fiber amplifiers[J]. Acta Physica Sinica, 2017, 66(23): 234206.

    [10] [10] Mortensen N A. Effective area of photonic crystal fibers[J]. Optics Express, 2002, 10(7): 341-348.

    [12] [12] Okishev A V. Highly efficient room-temperature Yb∶YAG ceramic laser and regenerative amplifier[J]. Optics Letters, 2012, 37(7): 1199-1201.

    [13] [13] Metzger T, Schwarz A, Teisset C Y, et al. High-repetition-rate picosecond pump laser based on a Yb∶YAG disk amplifier for optical parametric amplification[J]. Optics Letters, 2009,34(14): 2123-2125.

    [14] [14] Schulz M, Riedel R, Willner A, et al. Yb∶YAG InnoSlab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification[J]. Optics Letters, 2011, 36(13): 2456-2458.

    [15] [15] Xu L. LD-pumped InnoSlab laser oscillators and amplifiers[D]. Beijing: Beijing Institute of Technology, 2015.

    [16] [16] Jarman R H, Wallenberg A J, Thrash R J. Growth and fabrication of single-crystal Yb,Tm∶BaY2F8 fibers for upconversion visible laser operation[J]. Proceedings of SPIE, 1993, 1863: 106-113.

    [17] [17] Snitzer E. Proposed fiber cavities for optical masers[J]. Journal of Applied Physics, 1961, 32(1): 36-39.

    [19] [19] Boulon G. Combinatorial chemistry to grow single crystals and analysis of concentration quenching processes: application to Yb3+-doped laser crystals[M]∥Frontiers of optical spectroscopy. Netherlands: Springer, 2005: 689-714.

    [20] [20] Lebbou K, Perrodin D, Chani V I, et al. Fiber single-crystal growth from the melt for optical applications[J]. Journal of the American Ceramic Society, 2006, 89(1): 75-80.

    [21] [21] Gu Y G, Shen Y X, Chen S Y, et al. Molten zone controlling technique of single crystal fiber by means of LHPG growth[J]. Materials Science & Engineering, 2001, 19(4): 20-23.

    [23] [23] Li Y, Johnson E G, Nie C D, et al. Ho∶YAG single crystal fiber: fabrication and optical characterization[J]. Optics Express, 2014, 22(12): 14896-14903.

    [24] [24] Rapaport A, Zhao S Z, Xiao G H, et al. Temperature dependence of the 106-μm stimulated emission cross section of neodymium in YAG and in GSGG[J]. Applied Optics, 2002, 41(33): 7052-7057.

    [25] [25] Kuznetsov I, Mukhin I B, Palashov O V, et al. Thin-tapered-rod Yb∶YAG laser amplifier[J]. Optics Letters, 2016, 41(22): 5361-5364.

    [26] [26] Martial I, Ferguson H, Douri N, et al. Amplification of a passively Q-switched Nd∶YAG microlaser in a crystal fiber[C]∥Advanced Solid-State Photonics, OSA, 2010: AMB11.

    [27] [27] Martial I, Balembois F, Didierjean J, et al. 2.5 mJ, sub-nanosecond pulses from single-crystal fiber amplifier in a kHz MOPA system[C]∥Advanced Solid-State Photonics, OSA, 2011: ATuB6.

    [28] [28] Martial I, Balembois F, Didierjean J, et al. High energy, high peak power (2.6 mJ/5.6 MW) or high average power (20 W) Nd∶YAG single-crystal fiber amplifier in a sub-ns kHz system[C]∥ Lasers and Electro-Optics Europe, IEEE, 2011: CA7_2.

    [29] [29] Rodin A, Aleknavicius A, Michailovas A, et al. Beam quality investigation in Nd∶YAG crystal fiber amplifier pumped at > 110 W[J]. Proceedings of SPIE, 2015, 9342: 934207.

    [30] [30] Zaouter Y, Martial I, Delen X, et al. 12 W, 350 fs ultrashort pulses from a micro-pulling down Yb∶YAG single crystal fiber amplifier[C]∥Lasers and Electro-Optics Europe, IEEE, 2011: CA6_3.

    [31] [31] Délen X, Zaouter Y, Martial I, et al. Yb∶YAG single crystal fiber power amplifier for femtosecond sources[J]. Optics Letters, 2013, 38(2): 109-111.

    [32] [32] Piehler S, Delen X, Didierjean J, et al. High power amplification in Yb∶YAG single crystal fibers[C]∥Conference on Lasers and Electro-Optics, IEEE, 2013: CA4_4.

    [33] [33] Saby J, Sangla D, Deslandes P, et al. Non-CPA high energy picosecond laser based on single-crystal fiber amplifier[C]∥Advanced Solid-State Lasers, OSA, 2014: ATh2A.28.

    [34] [34] Zhao Z G, Dong Y T, Pan S Q, et al. 50 W class double-end-pumped Nd∶YVO4 TEM00 mode solid state laser oscillator[J]. Chinese Journal of Lasers, 2011, 38(9): 0902001.

    [36] [36] Markovic V, Rohrbacher A, Hofmann P, et al. 100 W class compact Yb∶YAG single crystal fiber amplifier for femtosecond lasers without CPA[J]. Proceedings of SPIE, 2016, 9726: 972609.

    [37] [37] Rodin A, Rusteika N, Slavinskis N. 30 W thin Yb∶YAG rod chirped pulse amplifier with high output beam quality[J]. Journal of Antimicrobial Chemotherapy, 2016, 70(1): 257-263.

    [38] [38] Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567-577.

    [39] [39] Kienel M, Muller M, Demmler S, et al. Coherent beam combination of Yb∶YAG single-crystal rod amplifiers[J]. Optics Letters, 2014, 39(11): 3278-3281.

    [40] [40] Zaouter Y, Guichard F, Daniault L, et al. Power and energy scaling of ultrafast fiber systems using chirped and divided pulse amplification for high end applications[C]∥International Quantum Electronics Conference, 2013: CTu1K.2.

    [41] [41] Pouysegur J, Weichelt B, Guichard F, et al. Simple Yb∶YAG femtosecond booster amplifier using divided-pulse amplification[J]. Optics Express, 2016, 24(9): 9896-9904.

    [42] [42] Lesparre F, Gomes J T, Delen X, et al. Yb∶YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique[J]. Optics Letters, 2016, 41(7): 1628-1631.

    Tools

    Get Citation

    Copy Citation Text

    Wang Yalan, Wang Qing. Research Progress in Single-Crystal Fiber Amplifiers[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: Apr. 23, 2018

    Accepted: --

    Published Online: Oct. 14, 2018

    The Author Email: Qing Wang (qingwang@bit.edu.cn)

    DOI:10.3788/lop55.100006

    Topics