Journal of the Chinese Ceramic Society, Volume. 51, Issue 12, 3240(2023)

Narrowband Green-Emitting Phosphors Based on Eu2+和Mn2+ Activated Backlights Display

LIU Yunzheng... MA Daoyuan and XIA Libin |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(42)

    [1] [1] ZHAO M, ZHANG Q Y, XIA Z G. Narrow-band emitters in LED backlights for liquid-crystal displays[J]. Mater Today, 2020, 40: 246-265.

    [2] [2] WANG L, WANG X J, KOHSEI T, et al. Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays[J]. Opt Express, 2015, 23(22): 28707-28717.

    [3] [3] Nathan M. The blue laser diode. GaN based light emitters and lasers-Nakamura,S, Fasol,G [J]. Science, 1997, 277(5322): 46-47.

    [4] [4] FANG M H, LEAO J L Jr, LIU R S. Control of narrow-band emission in phosphor materials for application in light-emitting diodes[J]. ACS Energy Lett, 2018, 3(10): 2573-2586.

    [5] [5] ZHANG X J, WANG H C, TANG A C, et al. Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display[J]. Chem Mater, 2016, 28(23): 8493-8497.

    [6] [6] TAKEDA T, XIE R J, HIROSAKI N, et al. Manganese valence and coordination structure in Mn, Mg-codoped γ-AlON green phosphor[J]. J Solid State Chem, 2012, 194: 71-75.

    [7] [7] HE J, SHI R, WANG Z Q, et al. Suppression of Eu2+ luminescence loss[J]. Adv Optical Mater, 2022, 10(1): 2101751.

    [8] [8] YOSHIMURA K, FUKUNAGA H, IZUMI M, et al. White LEDs using the sharp β-sialon: Eu phosphor and Mn-doped red phosphor for wide-color gamut display applications[J]. J Soc Inf Disp, 2016, 24(7): 449-453.

    [9] [9] FUKUDA Y, MATSUDA N, OKADA A, et al. White light-emitting diodes for wide-color-gamut backlight using green-emitting Sr-sialon phosphor[J]. Jpn J Appl Phys, 2012, 51(12R): 122101.

    [10] [10] XIE R J, HIROSAKI N, TAKEDA T. Wide color gamut backlight for liquid crystal displays using three-band phosphor-converted white light-emitting diodes[J]. Appl Phys Express, 2009, 2: 022401.

    [11] [11] YAMADA S, EMOTO H, IBUKIYAMA M, et al. Properties of SiAlON powder phosphors for white LEDs[J]. J Eur Ceram Soc, 2012, 32(7): 1355-1358.

    [12] [12] TAKAHASHI K, YOSHIMURA K I, HARADA M, et al. On the origin of fine structure in the photoluminescence spectra of the β-sialon: Eu2+ green phosphor[J]. Sci Technol Adv Mater, 2012, 13(1): 015004.

    [13] [13] JI W T, WANG S X, SONG Z, et al. Luminescent thermal stability and electronic structure of narrow-band green-emitting Sr-Sialon: Eu2+ phosphors for LED/LCD backlights[J]. J Alloys Compd, 2019, 805: 1246-1253.

    [14] [14] BOUQUIAUX J, PONC S, JIA Y C, et al. Importance of long-range channel Sr displacements for the narrow emission in Sr[Li2Al2O2N2]: Eu2+ phosphor[J]. Adv Optical Mater, 2021, 9(20): 2100649.

    [15] [15] KIM Y H, ARUNKUMAR P, BIN IM W. Facile fabrication of moisture resistance and thermally stable SrGa2S4: Eu2+ phosphor-in-glass microcubes for white LED[J]. Ceram Int, 2015, 41(3): 5200-5204.

    [16] [16] GAN L, MAO Z Y, ZENG X H, et al. The origin of bimodal luminescence of β-SiAlON: Eu2+ phosphors as revealed by fluorescence microscopy and cathodoluminescence analysis[J]. Mater Res Bull, 2014, 51: 205-209.

    [17] [17] Li S, Wang L, Tang D, et al. Achieving High Quantum Efficiency Narrow-Band β-Sialon:Eu2+ Phosphors for High-Brightness LCD Backlights by Reducing the Eu3+ Luminescence Killer [J]. Chemistry of Materials, 2017, 30(2): 494-505.

    [18] [18] ZHANG X J, FANG M H, TSAI Y T, et al. Controlling of structural ordering and rigidity of β-SiAlON: Eu through chemical cosubstitution to approach narrow-band-emission for light-emitting diodes application[J]. Chem Mater, 2017, 29(16): 6781-6792.

    [19] [19] TAKEDA T, HIROSAKI N, FUNAHSHI S, et al. Narrow-band green-emitting phosphor Ba2LiSi7AlN12: Eu2+ with high thermal stability discovered by a single particle diagnosis approach[J]. Chem Mater, 2015, 27(17): 5892-5898.

    [20] [20] STROBEL P, SCHMIECHEN S, SIEGERT M, et al. Narrow-band green emitting nitridolithoalumosilicate Ba[Li2(Al2Si2)N6]: Eu2+ with framework topology whj for LED/LCD-backlighting applications[J]. Chem Mater, 2015, 27(17): 6109-6115.

    [21] [21] WANG X S, HUANG X X, ZHAO M, et al. Role of the rigid host structure in narrow-band green emission of Eu2+ in Rb2Na2(Li3SiO4)4: insights into electron-phonon coupling[J]. Inorg Chem, 2022, 61(19): 7617-7623.

    [22] [22] FANG M H, MARIANO C O M, CHEN K C, et al. High-performance NaK2Li[Li3SiO4]4: Eu green phosphor for backlighting light-emitting diodes[J]. Chem Mater, 2021, 33(5): 1893-1899.

    [23] [23] LIAO H X, ZHAO M, MOLOKEEV M S, et al. Learning from a mineral structure toward an ultra-narrow-band blue-emitting silicate phosphor RbNa3(Li3SiO4)4: Eu2+[J]. Angew Chem Int Ed, 2018, 57(36): 11728-11731.

    [24] [24] DUTZLER D, SEIBALD M, BAUMANN D, et al. Alkali lithosilicates: renaissance of a reputable substance class with surprising luminescence properties[J]. Angew Chem Int Ed, 2018, 57(41): 13676-13680.

    [25] [25] ZHAO M, LIAO H X, NING L X, et al. Next-generation narrow-band green-emitting RbLi(Li3 SiO4)2: Eu2+ phosphor for backlight display application[J]. Adv Mater, 2018, 30(38): e1802489.

    [26] [26] ZHAO M, CAO K, LIU M J, et al. Dual-shelled RbLi(Li3SiO4)2: Eu2+@Al2O3@ODTMS phosphor as a stable green emitter for high-power LED backlights[J]. Angew Chem Int Ed Engl, 2020, 59(31): 12938-12943.

    [27] [27] ZHAO M, YANG Z Y, NING L X, et al. Tailoring of white luminescence in a NaLi3SiO4: Eu2+ phosphor containing broad-band defect-induced charge-transfer emission[J]. Adv Mater, 2021, 33(29): 2101428.

    [28] [28] LIAO M, WANG Q, LIN Q M, et al. Na replaces Rb towards high-performance narrow-band green phosphors for backlight display applications[J]. Adv Optical Mater, 2021, 9(17): 2100465.

    [29] [29] MEIJERINK A. Emerging substance class with narrow-band blue/green-emitting rare earth phosphors for backlight display application[J]. Sci China Mater, 2018, 62: 146-148.

    [30] [30] SONG E H, ZHOU Y Y, WEI Y, et al. A thermally stable narrow-band green-emitting phosphor MgAl2O4: Mn2+ for wide color gamut backlight display application[J]. J Mater Chem C, 2019, 7(27): 8192-8198.

    [31] [31] ZHU Y L, LIANG Y J, LIU S Q, et al. Narrow-band green-emitting Sr2MgAl22O36: Mn2+ phosphors with superior thermal stability and wide color gamut for backlighting display applications[J]. Adv Opt Mater, 2019, 7(6): 1801419.

    [32] [32] YU H, HUA Y J, YE R G, et al. Mn2+ doped BaAl11O16N phosphors with narrow band green emission and superior thermal stability for backlighting display applications[J]. J Lumin, 2023, 254: 119537.

    [33] [33] YOSHIMURA K, FUKUNAGA H, IZUMI M, et al. Achieving superwide-color-gamut display by using narrow-band green-emitting γ-AlON: Mn, Mg phosphor[J]. Jpn J Appl Phys, 2017, 56(4): 041701.

    [34] [34] SONG Y H, PARK S Y, YOO J S, et al. Efficient and stable green-emitting CsPbBr3 perovskite nanocrystals in a microcapsule for light emitting diodes[J]. Chem Eng J, 2018, 352: 957-963.

    [35] [35] KANG H, LEE K N, UNITHRATTIL S, et al. Narrow-band SrMgAl10O17: Eu2+, Mn2+ green phosphors for wide-color-gamut backlight for LCD displays[J]. ACS Omega, 2020, 5(31): 19516-19524.

    [36] [36] LI J Y, ZHOU X F, DING J Y, et al. Mechanism analysis of a narrow-band ultra-bright green phosphor with its prospect in white light-emitting diodes and field emission displays[J]. J Mater Chem C, 2019, 7(8): 2257-2266.

    [37] [37] WU D W, ZHOU J C, LIN X R, et al. Structure, luminescence, and energy transfer of a narrow-band green-emitting phosphor Ce5Si3O12N: Tb3+ for near-ultraviolet light-emitting diode-driven liquid-crystal display[J]. ACS Appl Electron Mater, 2021, 3(1): 406-414.

    [38] [38] ZHANG X, GAO S, LI Z, et al. First-principles study of the electronic structure and optical properties of Eu2+-M (M = Mn2+, Mg2+, Li+) co-doped γ-AlON phosphor[J]. Ceram Int, 2019, 45(6): 7778-7784.

    [39] [39] LI H R, LIANG Y J, LIU S Q, et al. Highly efficient green-emitting phosphor Sr4Al14O25: Ce, Tb with low thermal quenching and wide color gamut upon UV-light excitation for backlighting display applications[J]. J Mater Chem C, 2021, 9(7): 2569-2581.

    [40] [40] TANG H, YANG D, LI H, et al. A narrow-band RbBaBP2O8: Tb3+ green phosphor with high thermal stability for backlighting display application[J]. J Lumin, 2023, 257: 119733.

    [41] [41] LIAO H X, ZHAO M, ZHOU Y Y, et al. Polyhedron transformation toward stable narrow-band green phosphors for wide-color-gamut liquid crystal display[J]. Adv Funct Mater, 2019, 29(30): 1901988.

    [42] [42] WU Z Y, LI C, ZHANG F, et al. High-performance ultra-narrow-band green-emitting phosphor LaMgAl11O19: Mn2+ for wide color-gamut WLED backlight displays[J]. J Mater Chem C, 2022, 10(19): 7443-7448.

    Tools

    Get Citation

    Copy Citation Text

    LIU Yunzheng, MA Daoyuan, XIA Libin. Narrowband Green-Emitting Phosphors Based on Eu2+和Mn2+ Activated Backlights Display[J]. Journal of the Chinese Ceramic Society, 2023, 51(12): 3240

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 8, 2023

    Accepted: --

    Published Online: Jan. 19, 2024

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics