Journal of the Chinese Ceramic Society, Volume. 50, Issue 2, 503(2022)
Research Progress on Macro Biological Corrosion of Marine Concrete
[1] [1] JAYAKUMAR S, SARAVANANE R. Biodeterioration of coastal concrete structures by marine green algae[J]. Int J Civ Eng, 2010, 8(4): 352-361.
[2] [2] QUADRI S A, QUADRI S A, SIDEK O, et al. Quantification of biofilm on flooring surface using image classification technique[J]. Neural Comput Appl, 2014, 24(7): 1815-1821.
[3] [3] GIOVANNACCI D, LECLAIRE C, HORGNIES M, et al. Algal colonization kinetics on roofing and faade tiles: Influence of physical parameters[J]. Constr Build Mater, 2013(48): 670-679.
[4] [4] HAUER T. Phototrophic biofilms on the interior walls of concrete Iterson-type cooling towers[J]. J Appl Phycol, 2010, 22(6): 733-736.
[6] [6] STAFSLIEN S J, BAHR J, DANIELS J, et al. High-Throughput screening of fouling-release properties: an overview[J]. J Adhes Sci Technol, 2011, 25(17): 2239-2253.
[7] [7] GROZEA C M, WALKER G C. Approaches in designing non-toxic polymer surfaces to deter marine biofouling[J]. Soft Matter, 2009, 5(21): 4088-4100.
[11] [11] FITRIDGE I, DEMPSTER T, GUENTHER J, et al. The impact and control of biofouling in marine aquaculture: a review[J]. Biofouling, 2012, 28(7): 649-669.
[12] [12] GULE N P, BEGUM N M, KLUMPERMAN B. Advances in biofouling mitigation: A review[J]. Crit Rev Env Sci Tech, 2015, 46(6): 535-555.
[13] [13] CALLOW M E, CALLOW J A. Marine biofouling: a sticky problem[J]. Biologist, 2002, 49(1): 10-15.
[15] [15] HUGHES P, FAIRHURST D, SHERRINGTON I, et al. Microscopic examination of a new mechanism for accelerated degradation of synthetic fibre reinforced marine concrete[J]. Constr Build Mater, 2013, 41: 498-504.
[16] [16] GOWELL M R, COOMBES M A, VILES H A. Rock-protecting seaweed? Experimental evidence of bioprotection in the intertidal zone[J]. Earth Surf Proc Land, 2015, 40: 1364-1370.
[17] [17] CHLAYON T, IWANAMI M, CHIJIWA N. Combined protective action of barnacles and biofilm on concrete surface in intertidal areas[J]. Constr Build Mater, 2018, 179: 477-487.
[18] [18] KAWABATA Y, KATO E, LWANAMI M. Enhanced long-term resistance of concrete with marine sessile organisms tochloride ion penetration[J]. J Adv Concr Technol, 2012, 10: 151-159.
[19] [19] LV J, MAO J, BA H. Influence of Crassostrea gigas on the permeability and microstructure of the surface layer of concrete exposed to the tidal zone of the Yellow Sea[J]. Biofouling, 2014, 31(1/2): 61-70.
[20] [20] YAO G, XU M, AN X. Concrete deterioration caused by freshwater mussel Limnoperna fortunei fouling[J]. Int Biodeter Biodegr, 2017, 121: 55-65.
[21] [21] WANG G, ZHENGMAO Y B W. The change of stress on marine concrete covered with barnacles[J]. Appl Mech Mater, 2014, 584/586: 1031-1034.
[22] [22] YEBRA D M, KIIL S, DAM-JOHANSEN K. Antifouling technology - past, present and future steps towards efficient and environmentally friendly antifouling coatings[J]. Prog Org Coat, 2004, 50(2): 75-104.
[24] [24] LARMAN V N, GABBOTT P A. Settlement of cyprid larvae of Balanus balanoides and Elminius modestus induced by extracts of adult barnacles and other marine animals[J]. J Mar Biol Assoc UK, 1975, 55(1): 183-190.
[25] [25] AL-AIDAROOS A M, SATHEESH S, DEVASSY R P. Biochemical analysis of adhesives produced by the cypris larvae of barnacle amphibalanus amphitrite[J]. Thalassas: Inter J Mar Sci, 2016, 32(1): 37-42.
[26] [26] CRAGG S M, PITMAN A J, HENDERSON S M. Developments in the understanding of the biology of marine wood boring crustaceans and in methods of controlling them[J]. Int Biodeter Biodegr, 1999, 43(4): 197-205.
[27] [27] ANIL A C, KHANDEPARKER L, DESAI D V, et al. Larval development, sensory mechanisms and physiological adaptations in acorn barnacles with special reference to Balanus amphitrite[J]. J Exp Mar Biol Ecol, 2010, 392(1): 89-98.
[31] [31] BANOV A. Paints and Coatings Handbook[M]. Michigan: Structures Publishing Company, 1978.
[32] [32] GAYLARDE P M, GAYLARDE C C. Algae and cyanobacteria on painted buildings in Latin America[J]. Int Biodeter Biodegr, 2000, 46(2): 93-97.
[33] [33] GAYLARDE P M, GAYLARDE C C. Algae and cyanobacteria on painted buildings in Southern Brazil[J]. Braz J Microbiol, 1999, 30: 209-213.
[34] [34] GAYLARDE C C, MORTON L H G, LOH K, et al. Biodeterioration of external architectural paint films - a review[J]. Int Biodeter Biodegr, 2011, 65(8): 1189-1198.
[35] [35] HUGHES P, FAIRHURST D, SHERRINGTON I, et al. Microscopic study into biodeterioration of marine concrete[J]. Int Biodeter Biodegr, 2013, 79: 14-19.
[36] [36] CHLAYON T, IWANAMI M, CHIJIWA N. Impacts from concrete microstructure and surface on the settlement of sessile organisms affecting chloride attack[J]. Constr Build Mater, 2020, 239: 117863.
[37] [37] LV J, MAO J, BA H. Influence of Crassostrea gigas on the permeability and microstructure of the surface layer of concrete exposed to the tidal zone of the Yellow Sea[J]. Biofouling, 2015, 31(1): 61-70.
[38] [38] KAMINO K. Mini-review: Barnacle adhesives and adhesion[J]. Biofouling, 2013, 29(6): 735-749.
[39] [39] NAYLOR L A, COOMBES M A, Viles H A. Reconceptualising the role of organisms in the erosion of rock coasts: A new model[J]. Geomorphology, 2012, 157/158: 17-30.
[43] [43] JENKINS S R, NORTON T A, HAWKINS S J. Settlement and post-settlement interactions between Semibalanus balanoides (L. ) (Crustacea: Cirripedia) and three species of fucoid canopy algae[J]. J Exp Mar Biol Ecol, 1999, 236(1): 49-67.
[45] [45] GOHAD N V, ALDRED N, HARTSHORN C M, et al. Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae[J]. Nat Commun, 2014, 5(1): 4414.
[46] [46] HUGGETT M J, NEDVED B T, HADFIELD M G. Effects of initial surface wettability on biofilm formation and subsequent settlement of Hydroides elegans[J]. Biofouling, 2009, 25(5): 387-399.
[47] [47] GANESAN A M, ALFARO A C, BROOKS J D, et al. The role of bacterial biofilms and exudates on the settlement of mussel (Perna canaliculus) larvae[J]. Aquaculture, 2010, 306(1): 388-392.
[48] [48] APOLINARIO M, COUTINHO R. 6-Understanding the biofouling of offshore and deep-sea structures[M]. Britain: Woodhead Publishing, 2009, 132-147.
[49] [49] DARRIGRAN G, BONEL N, COLAUTTI D, et al. An alternative method to assess individual growth of the golden mussel (Limnoperna fortunei) in the wild[J]. J Freshwater Ecol, 2011, 26(4): 527-535.
[51] [51] COOMBES M A, VILES H A, NAYLOR L A, et al. Cool barnacles: Do common biogenic structures enhance or retard rates of deterioration of intertidal rocks and concrete?[J]. Sci Total Environ, 2017, 580: 1034-1045.
[52] [52] FLETCHER R L. Brief review of the role of marine algae in biodeterioration[J]. Int Biodeter, 1988, 24(3): 141-152.
[53] [53] ARMENDRIZ-ONTIVEROS M M, LVAREZ-SNCHEZ J, DVORA-ISIORDIA G E, et al. Effect of seawater variability on endemic bacterial biofouling of a reverse osmosis membrane coated with iron nanoparticles (FeNPs)[J]. Chem Eng Sci, 2020, 223: 115753.
[55] [55] NBAB C, JALG D, FCB C, et al. Seasonality combined with the orientation of surfaces influences the microbial community structure of biofilms in the deep Mediterranean Sea[J]. Deep-Sea Res Pt II, 2020, 171: 104703.
[56] [56] RAJAGOPAL S, VENUGOPALAN V P, VAN DER VELDE G, et al. Mussel colonization of a high flow artificial benthic habitat: Byssogenesis holds the key[J]. Mar Environ Res, 2006, 62(2): 98-115.
[57] [57] COOMBES M A, NAYLOR L A, THOMPSON R C, et al. Colonization and weathering of engineering materials by marine microorganisms: an SEM study[J]. Earth Surf Proc Land, 2011, 36(5): 582-593.
[58] [58] RAMAN S, KARUNAMOORTHY L, DOBLE M, et al. Barnacle adhesion on natural and synthetic substrates: Adhesive structure and composition[J]. Int J Adhes Adhes, 2013, 41: 140-143.
[59] [59] COOMBES M A, LA MARCA E C, NAYLOR L A, et al. Getting into the groove: Opportunities to enhance the ecological value of hard coastal infrastructure using fine-scale surface textures[J]. Ecol Eng, 2015, 77: 314-323.
[60] [60] ZERIOUH O, MARCO ROCAMORA A, REINOSO MORENO J V, et al. New insights into developing antibiofouling surfaces for industrial photobioreactors[J]. Biotechnol Bioeng, 2019, 116(9): 2212-2222.
[61] [61] HOWELL D, BEHRENDS B. A review of surface roughness in antifouling coatings illustrating the importance of cutoff length[J]. Biofouling, 2006, 22(6): 401-410.
[62] [62] TANACA H K, DIAS C M R, GAYLARDE C C, et al. Discoloration and fungal growth on three fiber cement formulations exposed in urban, rural and coastal zones[J]. Buil Environ, 2011, 46(2): 324-330.
[63] [63] KEDZIERSKI M, WIEJAK A, JANISZEWSKA J, et al. Efficiency of selected biocide compounds in the protection of building coatings against colonization by mold fungi, cyanobacteria and algae[J]. Polimery, 2020, 65(5): 371-379.
[66] [66] UTHAMAN S, VISHWAKARMA V, GEORGE R P, et al. Enhancement of strength and durability of fly ash concrete in seawater environments: Synergistic effect of nanoparticles[J]. Constr Build Mater, 2018, 187: 448-459.
[67] [67] KIRSCHNER C M, BRENNAN A B. Bio-Inspired Antifouling Strategies[J]. Annu Rev Mater Res, 2012, 42(1): 211-229.
[70] [70] MAURY-RAMIREZ A, DE MUYNCK W, STEVENS R, et al. Titanium dioxide based strategies to prevent algal fouling on cementitious materials[J]. Cem Concr Comp, 2013, 36: 93-100.
[71] [71] CHAMBERS L D, STOKES K R, WALSH F C, et al. Modern approaches to marine antifouling coatings[J]. Surf Coat Tech, 2006, 201(6): 3642-3652.
[72] [72] GADEMANN K. Cyanobacterial natural products for the inhibition of biofilm formation and biofouling[J]. Chimia Inter J Chem, 2007, 61: 373-377.
[73] [73] PETERSEN D S, SCHULTZ M, GORB S N, et al. A systematic investigation into the effect of fibrillar microstructures on the settlement and attachment strength of the bay barnacle Balanus improvisus under natural conditions[J]. Appl Phys A, 2020, 126(9): 1-11.
[74] [74] MIKULA P, M MLNAKOV, NADRES E T, et al. Synthetic biomimetic polymethacrylates: Promising platform for the design of anti-cyanobacterial and anti-algal agents[J]. Polymers, 2021, 13(7): 1025.
[75] [75] BERS A V, D'SOUZA F, KLIJNSTRA J W, et al. Chemical defence in mussels: antifouling effect of crude extracts of the periostracum of the blue mussel Mytilus edulis[J]. Biofouling, 2006, 22(3/4): 251-259.
[78] [78] BRANSCOMB E S, RITTSCHOF D. An investigation of low frequency sound waves as a means of inhibiting barnacle settlement[J]. J Exp Mar Biol Ecol, 1984, 79(2): 149-154.
[79] [79] PEREPELIZIN P V, BOLTOVSKOY D. Effects of 254 nm UV irradiation on the mobility and survival of larvae of the invasive fouling mussel Limnoperna fortunei[J]. Biofouling, 2014, 30(2): 197-202.
[81] [81] GAYLARDE C C, MORTON L H G. Deteriogenic biofilms on buildings and their control: A review[J]. Biofouling, 1999, 14(1): 59-74.
[82] [82] ALUM A, RASHID A, MOBASHER B, et al. Cement-based biocide coatings for controlling algal growth in water distribution canals[J]. Cem Concr Comp, 2008, 30(9): 839-847.
[84] [84] PIOCH S, RELINI G, SOUCHE J C, et al. Enhancing eco-engineering of coastal infrastructure with eco-design: Moving from mitigation to integration[J]. Ecol Eng, 2018, 120: 574-584.
[87] [87] MUYNCK W D, RAMIREZ A M, BELIE N D, et al. Evaluation of strategies to prevent algal fouling on white architectural and cellular concrete[J]. Int Biodeter Biodegr, 2009, 63(6): 679-689.
Get Citation
Copy Citation Text
RONG Hui, CHEN Xiaojie, LIU De-E, ZHANG Ying, ZHANG Lei, FENG Yang, LIU Zhihua. Research Progress on Macro Biological Corrosion of Marine Concrete[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 503
Category:
Received: Aug. 26, 2021
Accepted: --
Published Online: Nov. 23, 2022
The Author Email: Hui RONG (huirongtcu@126.com)
CSTR:32186.14.