High Power Laser and Particle Beams, Volume. 31, Issue 10, 103202(2019)
Progress of the research of space electrostatic effect of spacecraft
[10] [10] Finckenor M M, Kamenetzky R R, Vaughn J A, et al. Space environmental effects testing in support of the international space station[C]//38th AIAA Aerospace Sciences Meeting and Exhibit. 2001.
[11] [11] Wilkes D R, Zwiener J M. Science data report for the Optical Properties Monitor (OPM) experiment[R]. NASA CR-2001-210881.
[12] [12] Prebola J L, Bertrand W T, Crider D H, et al. Development of a combined space environment test facility at AEDC[R]. Aerospace Testing, 2006.
[14] [14] Okumura T, Mashidori H, Takahashi M, et al. Temperature effect on primary discharge under simulated space plasma environment[J]. IEEE Trans Plasma Science, 2012, 40(2): 345-350.
[15] [15] Katz I, Cassidy J J, Mandell M J, et al. The capabilities of the NASA charging analyzer program[J]. Spacecraft Charging Technol, 1978, 10: 101-122.
[16] [16] Mandell M J, Davis V A, Cooke D L, et al. Nascap-2K spacecraft charging code overview[J]. IEEE Trans Plasma Science, 2006, 34(5): 2084-2093.
[17] [17] Roussel J F, Rogier F, Dufour G, et al. SPIS open-source code: Methods, capabilities, achievements, and prospects[J]. IEEE Trans Plasma Science, 2008, 36(5): 2360-2368.
[18] [18] Muranaka T, Hosoda S, Kim J H, et al. Development of multi-utility spacecraft charging analysis tool[J]. IEEE Trans Plasma Science, 2008, 36(5): 2336-2349.
[19] [19] Roeder J L, Fennell J F. Differential charging of satellite surface materials[J]. IEEE Trans Plasma Science, 2009, 37(1): 281-289.
[23] [23] NASA. Avoiding problems caused by spacecraft on-orbit interal charging effects[R]. NASA-Hdbk-4002, 1999.
[26] [26] Kiefer R L, Orwoll R A. Shielding materials for highly penetrating space radiations[R]. NASA-CR-199720.
[27] [27] Hoang B, Wong F K, Corey R L, et al. Combined space environmental exposure test of multijunction GaAs/Ge solar array coupons[J]. IEEE Trans Plasma Science, 2012, 40(2): 324-333.
[28] [28] Purvis C K, Garrett A H B, Whittlesey C. Design guidelines for assessing and controlling spacecraft charging effects[R]. NASA TP-2361.
[29] [29] Boscher D, Bourdarie S, et al. A new model for electrons fluxes in GEO[C]//54th International Astronautical Congress of the International Astronautical Federation. 2003.
[30] [30] Fukushige S, Akahoshi Y, Watanabe K, et al. Solar-array arcing due to plasma created by space-debris impact[J]. IEEE Trans Plasma Science, 2008, 36(5): 2434-2439.
[31] [31] Katz I, Davis V A, Snyder D B, et al. Mechanism for spacecraft charging initiated destruction of solar arrays in GEO[R]. AIAA Paper, 1998.
[32] [32] Rodgers D. Spacecraft plasma interaction guidelines and handbook[R]. European Space Agency, 2004.
[33] [33] Olsen R C. Record charging events from Applied Technology Satellite 6[J]. Journal of Spacecraft and Rockets, 1987, 24(4): 362-366.
Get Citation
Copy Citation Text
Hu Xiaofeng, Zhang Jianping, Xu Bin. Progress of the research of space electrostatic effect of spacecraft[J]. High Power Laser and Particle Beams, 2019, 31(10): 103202
Category:
Received: Jun. 30, 2019
Accepted: --
Published Online: Oct. 14, 2019
The Author Email: Xiaofeng Hu (snowfox2270@163.com)