International Journal of Extreme Manufacturing, Volume. 6, Issue 2, 25501(2024)

Slippery hydrogel with desiccation-tolerant ‘skin’ for high-precision additive manufacturing

Desheng Liu1...2, Pan Jiang1,2, Yue Hu3, Yaozhong Lu1, Yixian Wang4, Jiayu Wu1,5, Danli Hu1, Tao Wu1, and Xiaolong Wang1,45,* |Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
  • 2These authors contributed equally to this work and should be considered co-first-author
  • 3CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
  • 4Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, People’s Republic of China
  • 5Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region,School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People’s Republic of China
  • show less
    References(42)

    [1] [1] Liu D S, Jiang P, Wang Y X, Lu Y Z, Wu J Y, Xu X, Ji Z Y,Sun C F, Wang X L and Liu W M 2023 Engineering tridimensional hydrogel tissue and organ phantoms with tunable springiness Adv. Funct. Mater. 33 2214885

    [2] [2] Liang Y P, He J H and Guo B L 2021 Functional hydrogels as wound dressing to enhance wound healing ACS Nano15 12687–722

    [3] [3] Zhang C Y, Wang J K, Li S, Zou X Q, Yin H X, Huang Y C,Dong F L, Li P Y and Song Y T 2023 Construction and characterization of highly stretchable ionic conductive hydrogels for flexible sensors with good anti-freezing performance Eur. Polym. J. 186 111827

    [4] [4] Li Q L, Chen J W, Zhang Y X, Chi C Y, Dong G F, Lin J R and Chen Q H 2021 Superelastic, antifreezing, antidrying, and conductive organohydrogels for wearable strain sensors ACS Appl. Mater. Interfaces 13 51546–55

    [5] [5] Guo J H, Yu Y R, Zhang D G, Zhang H and Zhao Y J 2021 Morphological hydrogel microfibers with MXene encapsulation for electronic skin Research 2021 7065907

    [6] [6] Lee Y, Song W J and Sun J Y 2020 Hydrogel soft robotics Mater. Today Phys. 15 100258

    [7] [7] Cui C, Gao H L, Wang Z Y, Wen S M, Wang L J, Fan X W,Gong X L and Yu S H 2023 Controlled desiccation of preprinted hydrogel scaffolds toward complex 3D microarchitectures Adv. Mater. 35 2207388

    [8] [8] Yang H, Ji M K, Yang M, Shi M X Z, Pan Y D, Zhou Y F,Qi H J, Suo Z G and Tang J D 2021 Fabricating hydrogels to mimic biological tissues of complex shapes and high fatigue resistance Matter 4 1935–46

    [9] [9] Wu J Y, Zhang Z X, Wu Z Y, Liu D S, Yang X X, Wang Y X,Jia X, Xu X, Jiang P and Wang X L 2023 Strong and ultra-tough supramolecular hydrogel enabled by strain-induced microphase separation Adv. Funct. Mater.33 2210395

    [10] [10] Wu J Y et al 2022 Biomechanically compatible hydrogel bioprosthetic valves Chem. Mater. 34 6129–41

    [11] [11] Mo X W, Ouyang L L, Xiong Z and Zhang T 2022 Advances in digital light processing of hydrogels Biomed. Mater.17 042002

    [12] [12] Zhan Z H, Chen L, Duan H G, Chen Y Q, He M and Wang Z L 2022 3D printed ultra-fast photothermal responsive shape memory hydrogel for microrobots Int. J. Extrem. Manuf.4 015302

    [13] [13] Chen L, Duan G H, Zhang C, Cheng P and Wang Z L 2022 3D printed hydrogel for soft thermo-responsive smart window Int. J. Extrem. Manuf. 4 025302

    [14] [14] Dong M, Han Y, Hao X P, Yu H C, Yin J, Du M, Zheng Q and Wu Z L 2022 Digital light processing 3D printing of tough supramolecular hydrogels with sophisticated architectures as impact-absorption elements Adv. Mater. 34 2204333

    [15] [15] Anandakrishnan N et al 2021 Fast stereolithography printing of large-scale biocompatible hydrogel models Adv. Healthc.Mater. 10 2002103

    [16] [16] Xie M B et al 2023 Volumetric additive manufacturing of pristine silk-based (bio)inks Nat. Commun. 14 210

    [17] [17] Li X L, Lou D Y, Wang H Y, Sun X Y, Li J and Liu Y N 2020 Flexible supercapacitor based on organohydrogel electrolyte with long-term anti-freezing and anti-drying property Adv. Funct. Mater. 30 2007291

    [18] [18] Yang J et al 2022 Tough adhesive, antifreezing, and antidrying natural globulin-based organohydrogels for strain sensors ACS Appl. Mater. Interfaces 14 39299–310

    [19] [19] Nguyen K, Kc S, Gonzalez T, Tapia H and Boothby T C 2022 Trehalose and tardigrade CAHS proteins work synergistically to promote desiccation tolerance Commun.Biol. 5 1046

    [20] [20] Murray B S and Liang H J 2000 Evidence for conformational stabilization of β-lactoglobulin when dried with trehalose Langmuir 16 6061–3

    [21] [21] Del Pilar Bremauntz M, Torres-Bustillos L G,Ca?nizares-Villanueva R O, Duran-Paramo E and Fernández-Linares L 2011 Trehalose and sucrose osmolytes accumulated by algae as potential raw material for bioethanol Nat. Resour. 2 173–9

    [22] [22] J?nsson K I and Persson O 2010 Trehalose in three species of desiccation tolerant tardigrades Open Zool. J. 3 1–5

    [23] [23] Aranda J S, Cabrera A I and Chairez J I 2008 Predicting trehalose cytoplasmic content during a saccharomyces cerevisiae biomass production process Rev. Mex. Ing. Quim.7 71–78

    [24] [24] Richards A B, Krakowka S, Dexter L B, Schmid H,Wolterbeek A P M, Waalkens-Berendsen D H, Shigoyuki A and Kurimoto M 2002 Trehalose: a review of properties,history of use and human tolerance, and results of multiple safety studies Food Chem. Toxicol. 40 871–98

    [25] [25] Green J L and Angell C A 1989 Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly J. Phys. Chem. 93 2880–2

    [26] [26] Lins R D, Pereira C S and Hünenberger P H 2004 Trehalose-protein interaction in aqueous solution Proteins 55 177–86

    [27] [27] Elbein A D 2004 Trehalose metabolism Encycl Biol. Chem.4 251–5

    [28] [28] Akao K I, Okubo Y, Asakawa N, Inoue Y and Sakurai M 2001Infrared spectroscopic study on the properties of the anhydrous form II of trehalose. Implications for the functional mechanism of trehalose as a biostabilizer Carbohydrate Res. 334 233–41

    [29] [29] Burek M, Wa′skiewicz S, Awietjan S and Wandzik I 2017 Thermoresponsive hydrogels with covalently incorporated trehalose as protein carriers React. Funct. Polym.119 105–15

    [30] [30] Ash C 2017 Trehalose confers superpowers Science 358 1398–9

    [31] [31] Elbein A D, Pan Y T, Pastuszak I and Carroll D 2003 New insights on trehalose: a multifunctional molecule Glycobiology 13 17R–27R

    [32] [32] Han Z L, Wang P, Lu Y C, Jia Z, Qu S X and Yang W 2022 A versatile hydrogel network–repairing strategy achieved by the covalent-like hydrogen bond interaction Sci. Adv.8 eabl5066

    [33] [33] Kim J R, Woo S H, Son Y L, Kim J R, Kasi R M and Kim S C 2021 Ultra-tough and super-swelling poly(vinyl alcohol)/poly(AAm-co-AA sodium salts) double network hydrogels Macromolecules 54 2439–48

    [34] [34] Sun H, Yu P, Peng X, Meng L Z, Qin M, Xu X Y and Li J S 2022 Inspired by the periodontium: a universal bacteria-defensive hydrogel for preventing percutaneous device-related infection ACS Appl. Mater. Interfaces14 50424–33

    [35] [35] Migliardo F, Bourdreux Y, Buchotte M, Doisneau G, Beau J M and Bayan N 2019 Study of the conformational behaviour of trehalose mycolates by FT-IR spectroscopy Chem. Phys.Lipids 223 104789

    [36] [36] Han I K et al 2023 Electroconductive, adhesive, non-swelling,and viscoelastic hydrogels for bioelectronics Adv. Mater.35 2203431

    [37] [37] Shin M, Shin S H, Lee M, Kim H J, Jeong J H, Choi Y H,Oh D X, Park J, Jeon H and Eom Y 2021 Rheological criteria for distinguishing self-healing and non-self-healing hydrogels Polymer 229 123969

    [38] [38] Tan C S Y, Liu J, Groombridge A S, Barrow S J, Dreiss C A and Scherman O A 2018 Controlling spatiotemporal mechanics of supramolecular hydrogel networks with highly branched cucurbit[8]uril polyrotaxanes Adv. Funct.Mater. 28 1702994

    [39] [39] Ma Y et al 2022 Biomacromolecule-based agent for high-precision light-based 3D hydrogel bioprinting Cell Rep. Phys. Sci. 3 100985

    [40] [40] Diaz-Dussan D, Peng Y Y, Sengupta J, Zabludowski R,Adam M K, Acker J P, Ben R N, Kumar P and Narain R 2020 Trehalose-based polyethers for cryopreservation and three-dimensional cell scaffolds Biomacromolecules 21 1264–73

    [41] [41] Warner D T 1962 Some possible relationships of carbohydrates and other biological components with the water structure at 37? Nature 196 1055–8

    [42] [42] Jiang P, Ji Z Y, Liu D S, Ma S H, Wang X L and Zhou F 2022 Growing hydrogel organ mannequins with interconnected cavity structures Adv. Funct. Mater. 32 2108845

    Tools

    Get Citation

    Copy Citation Text

    Desheng Liu, Pan Jiang, Yue Hu, Yaozhong Lu, Yixian Wang, Jiayu Wu, Danli Hu, Tao Wu, Xiaolong Wang. Slippery hydrogel with desiccation-tolerant ‘skin’ for high-precision additive manufacturing[J]. International Journal of Extreme Manufacturing, 2024, 6(2): 25501

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 28, 2023

    Accepted: --

    Published Online: Sep. 6, 2024

    The Author Email: Wang Xiaolong (wangxl@licp.cas.cn)

    DOI:10.1088/2631-7990/ad1730

    Topics