Photonics Research, Volume. 9, Issue 8, 1493(2021)

Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers

Qiuquan Yan1, Qinghui Deng2, Jun Zhang1, Ying Zhu2, Ke Yin3, Teng Li2,4, Dan Wu1,5, and Tian Jiang2,4、*
Author Affiliations
  • 1College of Computer, National University of Defense Technology, Changsha 410073, China
  • 2College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 3National Innovation Institute of Defense Technology, Academy of Military Sciences PLA China, Beijing 100071, China
  • 4Beijing Institute for Advanced Study, National University of Defense Technology, Beijing 100020, China
  • 5Hefei Interdisciplinary Center, National University of Defense Technology, Hefei 230037, China
  • show less
    References(46)

    [1] T. Zhou, L. Fang, T. Yan, J. Wu, Y. Li, J. Fan, H. Wu, X. Lin, Q. Dai. In situ optical backpropagation training of diffractive optical neural networks. Photon. Res., 8, 940-953(2020).

    [2] Y. Chang, H. Wu, C. Zhao, L. Shen, S. Fu, M. Tang. Distributed Brillouin frequency shift extraction via a convolutional neural network. Photon. Res., 8, 690-697(2020).

    [3] Z. Tao, J. Zhang, J. You, H. Hao, H. Ouyang, Q. Yan, S. Du, Z. Zhao, Q. Yang, X. Zheng, T. Jiang. Exploiting deep learning network in optical chirality tuning and manipulation of diffractive chiral metamaterials. Nanophotonics, 9, 2945-2956(2020).

    [4] B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, P. R. Prucnal. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).

    [5] H. Lin, J. Xie, T. Fan, Y. He, J. Chen, H. Zhang, S. Zhuo. Rapid prediction of drug inhibition under heat stress: single-photon imaging combined with a convolutional neural network. Nanoscale, 12, 23134-23139(2020).

    [6] Z. Tao, J. You, J. Zhang, X. Zheng, H. Liu, T. Jiang. Optical circular dichroism engineering in chiral metamaterials utilizing a deep learning network. Opt. Lett., 45, 1403-1406(2020).

    [7] J. Li, D. Mengu, Y. Luo, Y. Rivenson, A. Ozcan, T. Jiang. Class-specific differential detection in diffractive optical neural networks improves inference accuracy. Adv. Photon., 1, 046001(2019).

    [8] S. Feng, Q. Chen, G. Gu, T. Tao, L. Zhang, Y. Hu, W. Yin, C. Zuo. Fringe pattern analysis using deep learning. Adv. Photon., 1, 025001(2019).

    [9] Y. Li. Deep reinforcement learning: an overview(2017).

    [10] J. Ma, Z. Piao, S. Huang, X. Duan, G. Qin, L. Zhou, Y. Xu. Monte Carlo simulation fused with target distribution modeling via deep reinforcement learning for automatic high-efficiency photon distribution estimation. Photon. Res., 9, B45-B56(2021).

    [11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis. Human-level control through deep reinforcement learning. Nature, 518, 529-533(2015).

    [12] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra. Continuous control with deep reinforcement learning(2015).

    [13] Y. Han, S. Xiang, Y. Wang, Y. Ma, B. Wang, A. Wen, Y. Hao. Generation of multi-channel chaotic signals with time delay signature concealment and ultrafast photonic decision making based on a globally-coupled semiconductor laser network. Photon. Res., 8, 1792-1799(2020).

    [14] G. Genty, L. Salmela, J. M. Dudley, D. Brunner, A. Kokhanovskiy, S. Kobtsev, S. K. Turitsyn. Machine learning and applications in ultrafast photonics. Nat. Photonics, 15, 91-101(2020).

    [15] G. Pu, L. Zhang, W. Hu, L. Yi. Automatic mode-locking fiber lasers: progress and perspectives. Sci. China Inf. Sci., 63, 160404(2020).

    [16] T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, H. Zhang. Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photon. Res., 8, 78-90(2020).

    [17] K. Yin, Y. Li, Y. Wang, X. Zheng, T. Jiang. Self-starting all-fiber PM Er:laser mode locked by a biased nonlinear amplifying loop mirror. Chin. Phys. B, 28, 124203(2019).

    [18] J. Zou, C. Dong, H. Wang, T. Du, Z. Luo. Towards visible-wavelength passively mode-locked lasers in all-fibre format. Light Sci. Appl., 9, 61(2020).

    [19] X. Zhao, T. Li, Y. Liu, Q. Li, Z. Zheng. Polarization-multiplexed, dual-comb all-fiber mode-locked laser. Photon. Res., 6, 853-857(2018).

    [20] R. Miao, M. Tong, K. Yin, H. Ouyang, Z. Wang, X. Zheng, T. Jiang. Soliton mode-locked fiber laser with high-quality MBE-grown Bi2Se3 film. Chin. Opt. Lett., 17, 071403(2019).

    [21] W. Li, C. Zhu, X. Rong, J. Wu, H. Xu, F. Wang, Z. Luo, Z. Cai. Bidirectional red-light passively Q-switched all-fiber ring lasers with carbon nanotube saturable absorber. J. Lightwave Technol., 36, 2694-2701(2018).

    [22] J. Liu, J. Wu, H. Chen, Y. Chen, Z. Wang, C. Ma, H. Zhang. Short-pulsed Raman fiber laser and its dynamics. Sci. China Phys. Mech. Astron., 64, 214201(2020).

    [23] D. Huang, C. Shang, F. Li, Z. Cheng, X. Zhang, Z. Kang, X. Feng, P. Wai. Discrete Fourier domain harmonically mode locked laser by mode hopping modulation. 24th Opto-Electronics and Communications Conference (OECC) and International Conference on Photonics in Switching and Computing (PSC), 1-3(2019).

    [24] D. G. Winters, M. S. Kirchner, S. J. Backus, H. C. Kapteyn. Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser. Opt. Express, 25, 33216-33225(2017).

    [25] G. Pu, L. Yi, L. Zhang, W. Hu. Genetic algorithm-based fast real-time automatic mode-locked fiber laser. IEEE Photon. Technol. Lett., 32, 7-10(2019).

    [26] G. Pu, L. Yi, L. Zhang, C. Luo, Z. Li, W. Hu. Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis. Light Sci. Appl., 9, 13(2020).

    [27] U. Andral, J. Buguet, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, P. Grelu. Toward an autosetting mode-locked fiber laser cavity. J. Opt. Soc. Am. B, 33, 825-833(2016).

    [28] X. Fu, J. N. Kutz. High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm. Opt. Express, 21, 6526-6537(2013).

    [29] A. Kokhanovskiy, A. Bednyakova, E. Kuprikov, A. Ivanenko, M. Dyatlov, D. Lotkov, S. Kobtsev, S. Turitsyn. Machine learning-based pulse characterization in figure-eight mode-locked lasers. Opt. Lett., 44, 3410-3413(2019).

    [30] T. Hellwig, T. Walbaum, P. Groß, C. Fallnich. Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation. Appl. Phys. B, 101, 565-570(2010).

    [31] S. L. Brunton, X. Fu, J. N. Kutz. Extremum-seeking control of a mode-locked laser. IEEE J. Quantum Electron., 49, 852-861(2013).

    [32] J. N. Kutz, S. L. Brunton. Intelligent systems for stabilizing mode-locked lasers and frequency combs: machine learning and equation-free control paradigms for self-tuning optics. Nanophotonics, 4, 459-471(2015).

    [33] F. Meng, J. M. Dudley. Toward a self-driving ultrafast fiber laser. Light Sci. Appl., 9, 26(2020).

    [34] X. Shen, W. Li, M. Yan, H. Zeng. Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers. Opt. Lett., 37, 3426-3428(2012).

    [35] S. L. Brunton, X. Fu, J. N. Kutz. Self-tuning fiber lasers. IEEE J. Sel. Top. Quantum Electron., 20, 464-471(2014).

    [36] X. Fu, S. L. Brunton, J. N. Kutz. Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation. Opt. Express, 22, 8585-8597(2014).

    [37] T. Baumeister, S. L. Brunton, J. N. Kutz. Deep learning and model predictive control for self-tuning mode-locked lasers. J. Opt. Soc. Am. B, 35, 617-626(2018).

    [38] C. Sun, E. Kaiser, S. L. Brunton, J. N. Kutz. Deep reinforcement learning for optical systems: a case study of mode-locked lasers. Mach. Learn. Sci. Technol., 1, 045013(2020).

    [39] R. Woodward, E. J. Kelleher. Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm. Sci. Rep., 6, 37616(2016).

    [40] R. I. Woodward, E. J. R. Kelleher. Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers. Opt. Lett., 42, 2952-2955(2017).

    [41] G. Pu, L. Yi, L. Zhang, W. Hu. Intelligent programmable mode-locked fiber laser with a human-like algorithm. Optica, 6, 362-369(2019).

    [42] U. Andral, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, P. Grelu. Fiber laser mode locked through an evolutionary algorithm. Optica, 2, 275-278(2015).

    [43] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga. PyTorch: an imperative style, high-performance deep learning library(2019).

    [44] A. Martinez, Z. Sun. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics, 7, 842-845(2013).

    [45] X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, F. Wang. Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes. Sci. Rep., 3, 2718(2013).

    Tools

    Get Citation

    Copy Citation Text

    Qiuquan Yan, Qinghui Deng, Jun Zhang, Ying Zhu, Ke Yin, Teng Li, Dan Wu, Tian Jiang. Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers[J]. Photonics Research, 2021, 9(8): 1493

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Apr. 19, 2021

    Accepted: Jun. 6, 2021

    Published Online: Jul. 22, 2021

    The Author Email: Tian Jiang (tjiang@nudt.edu.cn)

    DOI:10.1364/PRJ.428117

    Topics