Laser & Optoelectronics Progress, Volume. 58, Issue 3, 3000051(2021)

Research Advancements in Optical Fiber Evanescent Wave Biochemical Sensing

Zhao Xudong1, Xu Yinsheng1,2, Zhang Xianghua1, and Zhao Xiujian1
Author Affiliations
  • 1State Key Laboratory of Silicate Building Materials, Wuhan University of Technology, Wuhan , Hubei 430070, China
  • 2State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou , Guangdong 510640, China
  • show less
    Figures & Tables(13)
    Fiber structure type: tapered fiber, U-shaped fiber, microstructure fiber, D-shaped fiber
    Optical fiber evanescent wave sensing
    Red shift of interference spectrum for a functionalized tapered optical fiber sensor used to detect Dengue E protein. (a) Without PMMA surface functionalization[15]; (b) with PMMA surface functionalization[16]
    Nucleic acid functionalized fiber optic probes[22]. (a) Schematic illustration of the sandwich-type assembly based Ade detection strategy; (b)calibration curve of Ade
    Schematic diagram of experimental setup used to characterize fabricated sensor[30]
    Fe2O3 nanotube coating micro-fiber interferometer[32]. (a) Diagrammatic sketch of gas sensing principle for the Fe2O3 coated MFI; (b) sectional view for the multi-core fiber
    MIR molecular fingerprint region[38]
    Evanescent wave biochemical sensing of chalcogenide fibers. (a) FEWS spectra of fed (solid line) and starved (dashed line) mice liver[41]; (b) human lung cell infrared spectra recorded with the TAS glass fiber[37]
    DIAFIR company’s product in France: TAS fiber evanescent wave sensor[42]
    Polymer-coated fiber sensor[44]. (a)General measurement principle of EWS of the polymer-coated fiber sensor;(b)IR absorption spectra of six concentrations of the p-xylene aqueous solution recorded by coated and uncoated ChG-TF
    SEM picture[14]. (a) Holes with different pulse energy; (b) hole with 24 mW pulse energy; (c) hole-array channels; (d) linear channels; (e) measured spectral responses at different CH4 concentrations; (f) absorption peak intensity as a function of CH4 concentration
    • Table 1. Research summary of silica fiber biochemical sensing

      View table

      Table 1. Research summary of silica fiber biochemical sensing

      AnalyteCoatingDetection limitLinear concentration rangeSensitivityResponse time /sReference
      Dengue virus3-aminopropyltriethoxysilane Dengue virus antibody0.1 μg·L-10.1‒1 μg·L-1

      7×10-6

      pg·mL-1

      ≤2 minRef. [17]
      Red blood cellP-doped graphene0‒104 mg·L-1>106pm·mg-1·L-1<50 sRef. [20]
      Procalcitonin

      Gold nanoparticles

      Procalcitonin antibody

      95 fg·mL-10.0001‒100 ng·mL-1≤15 minRef. [21]
      AdenosineDNA25 mmol·L-150‒3.5 mmol·L-1<300 sRef. [22]
      Methylene blue2‒50 μmol·L-1≤16 minRef. [25]
      Fe3+Carbon dot0.77 μg·L-10‒300 μg·L-10.0061 nm·μg-1·L-1≤4 minRef. [28]
      Cd2+Propylene thiourea44.8 μg·L-10‒13440 μg·L-1Ref. [29]
      pH

      ZnO micro-flower

      hydrogel

      Acid: 2.59 nm·pH-1

      Alkali: 0.70 nm·pH-1

      pH:3‒11≤10 sRef. [30]
      Ammonia

      PDMDAAC

      Sodium pyrophosphate

      0.5 mg·L-10.5‒50 mg·L-1<3 minRef. [33]
      CH2OZnO nanorod1.6 μg·L-10‒0.18 mg·L-19.78 dBm·mg-1·L-1200 sRef. [34]
    • Table 2. Research summary of MIR biochemical optical fiber sensor

      View table

      Table 2. Research summary of MIR biochemical optical fiber sensor

      Fiber typeTransmission range /μmAttenuation /(dB·m-1)AnalyteCharacteristic peak /μmConcentration rangeResponse time /sReference
      Ge20Ga5Sb10S65(MoS2Malignant tumor tissue10-9‒10-10 RIURef. [39]

      As40S60

      (Graphene)

      Hemoglobin118 μg·dL-1Ref. [40]

      Ge-As-Se-Te

      (Polydopamine)

      2.5‒160.57@6.52 μmP-xylene6.650 μg·mL-1<600Ref. [44]
      Ge26As17Se25Te322‒100.3‒1@5.2‒9.3 μmCH3CH2OH

      7.87‒8.33

      8.92‒10

      0‒20%(mole fraction)

      0‒50% (mole fraction)

      Ref. [45]
      Ge26As17Se25Te325‒9CH3COCH3

      7.33

      8.18

      1%(mole fraction)Ref. [47]
      Ge20Se60Te202.5‒153.4@5.9 μm

      CH3OH

      CH2Cl2

      9.78

      7.9

      Ref. [49]
      GaGeSbS3‒5CHCl34.16Ref. [50]
      Ge26As17Se25Te325.5‒8.5<1Antigenic additive7.830‒1%(volume raction)Ref. [52]
      As2S33‒101CH43.32>10-4<20Ref. [14]
      Ge-Te-AgI8‒13.5<10CO2

      4.25

      15

      Ref. [38]
    Tools

    Get Citation

    Copy Citation Text

    Zhao Xudong, Xu Yinsheng, Zhang Xianghua, Zhao Xiujian. Research Advancements in Optical Fiber Evanescent Wave Biochemical Sensing[J]. Laser & Optoelectronics Progress, 2021, 58(3): 3000051

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: May. 27, 2020

    Accepted: --

    Published Online: Mar. 12, 2021

    The Author Email:

    DOI:10.3788/LOP202158.0300005

    Topics