Journal of Electronic Science and Technology, Volume. 22, Issue 4, 100277(2024)
Intelligent obstacle avoidance algorithm for safe urban monitoring with autonomous mobile drones
[1] Vodák J., Šulyová D., Kubina M.. Advanced technologies and their use in smart city management. Sustainability, 13, 5746:1-20(2021).
[2] Petrolo R., Loscri V., Mitton N.. Towards a smart city based on cloud of things. a survey on the smart city vision and paradigms, T. Emerg. Telecommun. T., 28, e2931:1-21(2017).
[3] Outay F., Mengash H.A., Adnan M.. Applications of unmanned aerial vehicle (UAV) in road safety. traffic and highway infrastructure management: Recent advances and challenges, Transport. Res. A: Pol., 141, 116-129(2020).
[4] [4] J.I. HernándezVega, E.R. Varela, N.H. Romero, C. HernándezSantos, J.L.S. Cuevas, D.G.P. Gham, Inter of things (IoT) f moniting air pollutants with an unmanned aerial vehicle (UAV) in a smart city, in: F.T. Guerrero, J. LozoyaSantos, E.G. Mendivil, L. NeiraTovar, P.G.R. Fles, J. MartinGutierrez (Eds.), Smart Technology, Springer, Cham, Germany, 2018, pp. 108–120.
[6] [6] M. Hossain, A. Hossain, F.A. Sunny, A UAVbased traffic moniting system f smart cities, in: Proc. of Intl. Conf. on Sustainable Technologies f Industry 4.0, Dhaka, Bangladesh, 2019, pp. 1–6.
[7] [7] J.J. Roldán, P. GarciaAunon, E. PeñaTapia, A. Barrientos, SwarmCity project: Can an aerial swarm monit traffic in a smart city in: Proc. of IEEE Intl. Conf. on Pervasive Computing Communications Wkshops, Kyoto, Japan, 2019, pp. 862–867.
[9] [9] C.J. de Frías, A. AlKaff, F.M. Meno, Á. Madridano, J.M. Armingol, Intelligent cooperative system f traffic moniting in smart cities, in: Proc. of IEEE Intelligent Vehicles Symposium, Las Vegas, USA, 2020, pp. 33–38.
[10] [10] P. Gogoi, J. Dutta, R. Matam, M. Mukherjee, An UAV assisted multisens based smart parking system, in: Proc. of IEEE Conf. on Computer Communications Wkshops, Tonto, Canada, 2020, pp. 1225–1230.
[11] [11] M.S. Shirazi, A. Patooghy, R. Shisheie, M. Haque, Application of unmanned aerial vehicles in smart cities using computer vision techniques, in: Proc. of IEEE Intl. Smart Cities Conf., Piscataway, USA, 2020, pp. 1–7.
[13] [13] L.Y. Chen, H.S. Huang, C.J. Wu, Y.T. Tsai, Y.S. Chang, A Labased air quality monit on unmanned aerial vehicle f smart city, in: Proc. of Intl. Conf. on System Science Engineering, New Taipei, China, 2018, pp. 1–5.
[14] [14] G.P. Mayuga, C. Favila, C. Oppus, E. Macatulad, L.H. Lim, Airbne particulate matter moniting using UAVs f smart cities urban areas, in: Proc. of IEEE Region 10 Conf., Jeju, Republic of Kea, 2018, pp. 1398–1402.
[15] [15] P. Yadav, T. Pwal, V. Jha, S. Indu, Emerging lowcost air quality moniting techniques f smart cities with UAV, in: Proc. of IEEE Intl. Conf. on Electronics, Computing Communication Technologies, Bangale, India, 2020, pp. 1–6.
[16] [16] Z.W. Hu, Z.X. Bai, Y.Z. Yang, Z.J. Zheng, K.G. Bian, L.Y. Song, UAV aided aerialground IoT f air quality sensing in smart city: Architecture, technologies, implementation, IEEE wk 33 (2) (Mar.–Apr. 2019) 14–22.
[19] [19] A.B. Barreto, R.A.T. Santos, P.E.U. De Souza, M. Abrunhosa, A. Dominice, J.D. De Souza, Smartgrid assets inspections—enabling the smart cities infrastructure, in: Proc. of Intl. Conf. on Computational Science Computational Intelligence, Las Vegas, USA, 2018, pp. 531–536.
[20] [20] Y.F. Pan, F. Liu, J. Yang, et al., Broken power str detection with aerial images: A machine learning based approach, in: Proc. of IEEE Intl. Smart Cities Conf., Piscataway, USA, 2020, pp. 1–7.
[21] [21] W.D. Wu, M.A. Qurishee, J. Owino, I. Fomunung, M. Onyango, B. Atolagbe, Coupling deep learning UAV f infrastructure condition assessment automation, in: Proc. of IEEE Intl. Smart Cities Conf., Kansas City, USA, 2018, pp. 1–7.
[22] Roberts R., Inzerillo L., Di Mino G.. Using UAV based 3D modelling to provide smart monitoring of road pavement conditions. Information, 11, 568:1-24(2020).
[23] [23] T.P. Latha, K.N. Sundari, S. Cherukuri, M.V.V.S.V. Prasad, Remote sensing UAVdrone technology as a tool f urban development measures in APCRDA, in: Proc. of Intl. Archives of the Photogrammetry, Remote Sensing Spatial Infmation Sciences, Enschede, The herls, 2019, pp. 525–529.
[24] Roldán-Gómez J.J., Garcia-Aunon P., Mazariegos P., Barrientos A.. SwarmCity project: Monitoring traffic. pedestrians, climate, and pollution with an aerial robotic swarm, Pers. Ubiquit. Comput., 26, 1151-1167(2020).
[25] Xu H.-R., Wang L.-Z., Han W. et al. A survey on UAV applications in smart city management: Challenges. advances, and opportunities, IEEE J.-STARS, 16, 8982-9010(2023).
[26] Azevedo F., Cardoso J.S., Ferreira A., Fernandes T., Moreira M., Campos L.. Efficient reactive obstacle avoidance using spirals for escape. Drones, 5, 51:1-26(2021).
[27] Lin Y., Na Z.-Y., Feng Z.-L., Lin B., Lin Y.. Dual-game based UAV swarm obstacle avoidance algorithm in multi-narrow type obstacle scenarios. EURASIP J. Adv. Sig. Pr., 2023, 118:1-21(2023).
Get Citation
Copy Citation Text
Didar Yedilkhan, Abzal E. Kyzyrkanov, Zarina A. Kutpanova, Shadi Aljawarneh, Sabyrzhan K. Atanov. Intelligent obstacle avoidance algorithm for safe urban monitoring with autonomous mobile drones[J]. Journal of Electronic Science and Technology, 2024, 22(4): 100277
Category:
Received: May. 12, 2024
Accepted: Aug. 14, 2024
Published Online: Jan. 23, 2025
The Author Email: Kyzyrkanov Abzal E. (abzzall@gmail.com)