Ultrafast Science, Volume. 2, Issue 1, 0003(2022)

Tracking Conical Intersections with Nonlinear X-ray Raman Spectroscopy

Deependra Jadoun and Markus Kowalewski*
Author Affiliations
  • Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
  • show less
    References(55)

    [2] [2] Sinha RP, Häder D-P. UV-induced DNA damage and repair: A review. Photochem Photobiol Sci. 2002;1(4):225–236.

    [3] [3] Yarkony DR. Conical intersections: Diabolical and often misunderstood. Acc Chem Res. 1998;31(8):511–518.

    [4] [4] Matsika S, Krause P. Nonadiabatic events and conical intersections. Annu Rev Phys Chem. 2011;62:621–643.

    [5] [5] Domcke W, Yarkony D, Köppel H. Conical intersections: Electronic structure, dynamics & spectroscopy. Singapore: World Scientific; 2004. p. 15.

    [6] [6] Baer M. Beyond Born-Oppenheimer: Electronic nonadiabatic coupling terms and conical intersections. New Jersey (USA): John Wiley & Sons; 2006.

    [7] [7] Domcke W, Yarkony DR, Köppel H. Conical intersections. Singapore: World Scientific; 2011.

    [8] [8] Combes J-M, Duclos P, Seiler R. Rigorous atomic and molecular physics. Boston (USA): Springer; 1981. p. 185–213.

    [9] [9] Woolley RG, Sutcliffe BT. Molecular structure and the Born–Oppenheimer approximation. Chem Phys Lett. 1977;45:393–398.

    [10] [10] Essén H. The physics of the Born–Oppenheimer approximation. Int J Quantum Chem. 1977;12(4):721–735.

    [11] [11] Cederbaum LS. Born–Oppenheimer approximation and beyond for time-dependent electronic processes. J Chem Phys. 2008;128(12):124101.

    [12] [12] Robb MA. In this molecule there must be a conical intersection. Adv Phys Org Chem. 2014;48:189–228.

    [13] [13] Zhang C-H, Thumm U. Attosecond photoelectron spectroscopy of metal surfaces. Phys Rev Lett. 2009;102(12):123601.

    [15] [15] Calegari, F, Sansone G, Stagira S, Vozzi C, Nisoli M. Advances in attosecond science. J Phys B At Mol Opt Phys. 2016;49(6):Article 062001.

    [17] [17] Itatani J, Quéré F, Yudin GL, Ivanov MY, Krausz F, Corkum PB. Attosecond streak camera. Phys Rev Lett. 2002;88(17):173903.

    [18] [18] Popova-Gorelova D, Küpper J, Santra R. Imaging electron dynamics with time- and angle-resolved photoelectron spectroscopy. Phys Rev A. 2016;94(1):Article 013412.

    [19] [19] Rohringer N, Ryan D, London RA, Purvis M, Albert F, Dunn J, Bozek JD, Bostedt C, Graf A, Hill R, et al. Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature. 2012;481(7382):488–491.

    [20] [20] Rouxel JR, Kowalewski M, Bennett K, Mukamel S. X-ray sum frequency diffraction for direct imaging of ultrafast electron dynamics. Phys Rev Lett. 2018;120(24):243902.

    [22] [22] Krebs D, Rohringer N. Theory of parametric x-ray optical wavemixing processes. arXiv. 2021.

    [23] [23] Rohringer N, Santra R. X-ray nonlinear optical processes using a self-amplified spontaneous emission free-electron laser. Phys Rev A. 2007;76(3):Article 033416.

    [25] [25] Galbraith MCE, Scheit S, Golubev NV, Reitsma G, Zhavoronkov N, Despré V, Lépine F, Kuleff AI, Vrakking MJJ, Kornilov O, et al. Few-femtosecond passage of conical intersections in the benzene cation. Nat Commun. 2017;8(1):1–7.

    [26] [26] Krčmář J, Gelin MF, Egorova D, Domcke W. Signatures of conical intersections in two-dimensional electronic spectra. J Phys B At Mol Opt Phys. 2014;47(12):Article 124019.

    [27] [27] Sala M, Egorova D. Two-dimensional photon-echo spectroscopy at a conical intersection: A two-mode pyrazine model with dissipation. Chem Phys. 2016;481:206–217.

    [28] [28] Inhester L, Greenman L, Rudenko A, Rolles D, Santra R. Detecting coherent core-hole wave-packet dynamics in N2 by time- and angle-resolved inner-shell photoelectron spectroscopy. J Chem Phys. 2019;151(5);Article 054107.

    [30] [30] Smolarek S, Rijs AM, Buma WJ, Drabbels M. Absorption spectroscopy of adenine, 9-methyladenine, and 2-aminopurine in helium nanodroplets. Phys Chem Chem Phys. 2010;12(48):15600–15606.

    [34] [34] Wolf T, Myhre RH, Cryan J, Coriani S, Squibb R, Battistoni A, Berrah N, Bostedt C, Bucksbaum P, Coslovich G, et al. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption. Nat Commun. 2017;8:1–7.

    [35] [35] Duan H.-G, Jha A, Li X, Tiwari V, Ye H, Nayak PK, Zhu X.-L, Li Z, Martinez TJ, Thorwart M, et al. Intermolecular vibrations mediate ultrafast singlet fission. Sci Adv. 2020;6(38):Article eabb0052.

    [37] [37] Santoro F, Petrongolo C, Lami A. Time- and frequency-resolved spontaneous emission: Theory and application to the NO2X˜2A′/Ã2A′ conical intersection. J Chem Phys. 2000;113:4073–4082.

    [39] [39] Jadoun D, Gudem M, Kowalewski M. Capturing fingerprints of conical intersection: Complementary information of non-adiabatic dynamics from linear x-ray probes. Struct Dyn. 2021;8(3):Article 034101.

    [42] [42] Oliver TA, Fleming GR. Following coupled electronic-nuclear motion through conical intersections in the ultrafast relaxation of β-Apo-8′-carotenal. J Phys Chem B. 2015;119(34):11428–11441.

    [43] [43] Timmers H, Zhu X, Li Z, Kobayashi Y, Sabbar M, Hollstein M, Reduzzi M, Martínez TJ, Neumark DM, Leone SR. Disentangling conical intersection and coherent molecular dynamics in methyl bromide with attosecond transient absorption spectroscopy. Nat Commun. 2019;10:1–8.

    [44] [44] Bækhøj JE, Lévêque C, Madsen LB. Signatures of a conical intersection in attosecond transient absorption spectroscopy. Phys Rev Lett. 2018;121(2):Article 023203.

    [46] [46] Bennett K, Kowalewski M, Mukamel S. Nonadiabatic dynamics may be probed through electronic coherence in time-resolved photoelectron spectroscopy. J Chem Theory Comput. 2016;12(2):740–752.

    [48] [48] Dorfman KE, Bennett K, Mukamel S. Detecting electronic coherence by multidimensional broadband stimulated x-ray Raman signals. Phys Rev A. 2015;92(2):23826.

    [49] [49] Kowalewski M, Bennett K, Dorfman KE, Mukamel S. Catching conical intersections in the act: Monitoring transient electronic coherences by attosecond stimulated X-ray Raman signals. Phys Rev Lett. 2015;115(19):193003.

    [50] [50] Restaino L, Jadoun D, Kowalewski M. Probing nonadiabatic dynamics with attosecond pulse trains and soft x-ray Raman spectroscopy. Struct Dyn. 2022;9(3):Article 034101.

    [52] [52] Biggs JD, Voll JA, Mukamel S. Coherent nonlinear optical studies of elementary processes in biological complexes: Diagrammatic techniques based on the wave function versus the density matrix. Philos Trans R Soc A. 2012;370:3709–3727.

    [53] [53] Mukamel S. Principles of nonlinear optical spectroscopy. New York (USA): Oxford University Press; 1999. Oxford series in optical and imaging sciences.

    [55] [55] Triana JF, Peláez D, Sanz-Vicario JL. Entangled photonic-nuclear molecular dynamics of LiF in quantum optical cavities. J Phys Chem A. 2018;122(8):2266–2278.

    Tools

    Get Citation

    Copy Citation Text

    Deependra Jadoun, Markus Kowalewski. Tracking Conical Intersections with Nonlinear X-ray Raman Spectroscopy[J]. Ultrafast Science, 2022, 2(1): 0003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 11, 2022

    Accepted: Oct. 30, 2022

    Published Online: Sep. 28, 2023

    The Author Email: Kowalewski Markus (markus.kowalewski@fysik.su.se)

    DOI:10.34133/ultrafastscience.0003

    Topics