Journal of the Chinese Ceramic Society, Volume. 52, Issue 1, 359(2024)

Research Progress on Application of Attapulgite in Biomedicine

SUN Wei1... WANG Shenjin1, LIU Xiaoxi1, ZHANG Chenyang1,*, WANG Rong1, HAN Mingjun1, XIAO Yang2, YANG Yan3 and LIU Wei4 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(105)

    [1] [1] BONDAREV A, ZHILYAKOVA E, BONDAREVA N, et al. Classification and systematics of medical clay[C]//Proceedings of the 1st International Symposium Innovations in Life Sciences (ISILS 2019). Belgorod, Russian Federation. Paris, France: Atlantis Press, 2019: 146-148.

    [2] [2] KANOULAS V, PAPADOPOULOS G A, ARSENOS G, et al. Effects of attapulgite dietary supplementation on sow performance in two commercial farms in Greece[J]. J Hellenic Vet Med Soc, 2018, 68(2): 193.

    [3] [3] SKOUFOS I, GIANNENAS I, TONTIS D, et al. Effects of oregano essential oil and attapulgite on growth performance, intestinal microbiota and morphometry in broilers[J]. SA J An Sci, 2016, 46(1): 77.

    [4] [4] NING Y, QIN W, REN Y H, et al. Effect of icariin/attapulgite/collagen type Ⅰ/polycaprolactone composite scaffold in repair of rabbit tibia defect[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2019, 33(9): 1181-1189.

    [5] [5] WANG W B, WANG A Q. Recent progress in dispersion of palygorskite crystal bundles for nanocomposites[J]. Appl Clay Sci, 2016, 119: 18-30.

    [6] [6] GUO Chaoxian, SHI Bohan. J Beijing Univ Technol: Soc Sci Ed, 2021, 21(3): 65-79.

    [7] [7] CUI M K, MU P, SHEN Y Q, et al. Three-dimensional attapulgite with sandwich-like architecture used for multifunctional water remediation[J]. Sep Purif Technol, 2020, 235: 116210.

    [8] [8] WANG W B, WANG A Q. Palygorskite nanomaterials: Structure, properties, and functional applications[M]//Nanomaterials from Clay Minerals. Amsterdam: Elsevier, 2019: 21-133.

    [9] [9] Bradley W. The structural scheme of attapulgite[J]. Am Mineralogist: J Earth Planetary Mater, 1940, 25(6): 405-410.

    [10] [10] WANG W B, MU B, ZHANG J P, et al. Attapulgite: From clay minerals to functional materials[J]. Sci Sin-Chim, 2018, 48(12): 1432-1451.

    [11] [11] RHOUTA B, ZATILE E, BOUNA L, et al. Comprehensive physicochemical study of dioctahedral palygorskite-rich clay from Marrakech High Atlas (Morocco)[J]. Phys Chem Miner, 2013, 40(5): 411-424.

    [12] [12] WANG Aiqin, LU Yushen, (MOU/MU) Bin, et al. Chin Sci Bull, 2022, 67(Suppl 2): 3411-3424.

    [13] [13] WANG W B, WANG A Q. Nanoscale clay minerals for functional ecomaterials: Fabrication, applications, and future trends[J]. Handbook Ecomater, 2019, 2019: 2409-2490.

    [14] [14] HADEN W, SCHWINT I A. Attapulgite: Its properties and applications[J]. Ind Eng Chem, 1967, 59: 58-69.

    [15] [15] DUAN Z H, ZHAO Q N, WANG S, et al. Novel application of attapulgite on high performance and low-cost humidity sensors[J]. Sens Actuat B Chem, 2020, 305: 127534.

    [16] [16] PANDA B, RUAN S Q, UNLUER C, et al. Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay[J]. Compos Part B Eng, 2019, 165: 75-83.

    [17] [17] WANG Yuxuan, E Shengzhe, YUAN Jinhua, et al. Phosphate Compd Fertil, 2021, 36(4): 42-48.

    [18] [18] WANG H, WANG X J, MA J X, et al. Removal of cadmium (II) from aqueous solution: A comparative study of raw attapulgite clay and a reusable waste-struvite/attapulgite obtained from nutrient-rich wastewater[J]. J Hazard Mater, 2017, 329: 66-76.

    [19] [19] LI X Y, ZHANG D Y, LIU X Q, et al. A tandem demetalization- desilication strategy to enhance the porosity of attapulgite for adsorption and catalysis[J]. Chem Eng Sci, 2016, 141: 184-194.

    [20] [20] YANG F F, WANG A Q. Recent researches on antimicrobial nanocomposite and hybrid materials based on sepiolite and palygorskite[J]. Appl Clay Sci, 2022, 219: 106454.

    [21] [21] CAI X, ZHANG J L, OUYANG Y, et al. Bacteria-adsorbed palygorskite stabilizes the quaternary phosphonium salt with specific-targeting capability, long-term antibacterial activity, and lower cytotoxicity[J]. Langmuir, 2013, 29(17): 5279-5285.

    [22] [22] WANG Aiqin, WANG Wenbo, ZHENG Yian. Dissociation of attapulgite rod crystal beam and its nano-functional composites[M]. Beijing: Science Press, 2014.

    [23] [23] HUO C L, YANG H M. Synthesis and characterization of ZnO/palygorskite[J]. Appl Clay Sci, 2010, 50(3): 362-366.

    [24] [24] HUI A P, YAN R, WANG W B, et al. Incorporation of quaternary ammonium chitooligosaccharides on ZnO/palygorskite nanocomposites for enhancing antibacterial activities[J]. Carbohydr Polym, 2020, 247: 116685.

    [25] [25] ARAúJO C M, DAS VIRGENS SANTANA M, DO NASCIMENTO CAVALCANTE A, et al. Cashew-gum-based silver nanoparticles and palygorskite as green nanocomposites for antibacterial applications[J]. Mater Sci Eng C Mater Biol Appl, 2020, 115: 110927.

    [26] [26] HAN S, ZHANG H, KANG L W, et al. A convenient ultraviolet irradiation technique for synthesis of antibacterial Ag-pal nanocomposite[J]. Nanoscale Res Lett, 2016, 11(1): 431.

    [27] [27] DONSì F, FERRARI G. Essential oil nanoemulsions as antimicrobial agents in food[J]. J Biotechnol, 2016, 233: 106-120.

    [28] [28] WU Y P, LUO Y G, ZHOU B, et al. Porous metal-organic framework (MOF) Carrier for incorporation of volatile antimicrobial essential oil[J]. Food Control, 2019, 98: 174-178.

    [29] [29] LEI H, WEI Q N, WANG Q, et al. Characterization of ginger essential oil/palygorskite composite (GEO-PGS) and its anti-bacteria activity[J]. Mater Sci Eng C Mater Biol Appl, 2017, 73: 381-387.

    [30] [30] ZHONG H Q, MU B, YAN P J, et al. A comparative study on surface/interface mechanism and antibacterial properties of different hybrid materials prepared with essential oils active ingredients and palygorskite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618: 126455.

    [31] [31] Ministry of agriculture and rural affairs. Gaz Minist Agric Rural Aff People’s Repub China, 2019(7): 126.

    [32] [32] BAMPIDIS V A, CHRISTODOULOU V, THEOPHILOU N, et al. Effect of dietary palygorskite on performance and blood parameters of lactating Holstein cows[J]. Appl Clay Sci, 2014, 91-92: 25-29.

    [33] [33] CHEN Y P, CHENG Y F, LI X H, et al. Dietary palygorskite supplementation improves immunity, oxidative status, intestinal integrity, and barrier function of broilers at early age[J]. Anim Feed Sci Technol, 2016, 219: 200-209.

    [34] [34] CHEN Y P, CHENG Y F, YANG W L, et al. An evaluation of palygorskite inclusion on the growth performance and digestive function of broilers[J]. Appl Clay Sci, 2016, 129: 1-6.

    [35] [35] QIAO L, CHEN Y P, WEN C, et al. Effects of natural and heat modified palygorskite supplementation on the laying performance, egg quality, intestinal morphology, digestive enzyme activity and pancreatic enzyme mRNA expression of laying hens[J]. Appl Clay Sci, 2015, 104: 303-308.

    [36] [36] ZHANG N, HAN X Y, ZHAO Y, et al. Removal of aflatoxin B1 and Zearalenone by clay mineral materials: In the animal industry and environment[J]. Applied Clay Science, 2022, 228: 106614.

    [37] [37] CHEN Y P, CHENG Y F, WEN C, et al. The protective effects of modified palygorskite on the broilers fed a purified Zearalenone-contaminated diet[J]. Poult Sci, 2019, 98(9): 3802-3810.

    [38] [38] DING X M, YU Y, SU Z W, et al. Effects of essential oils on performance, egg quality, nutrient digestibility and yolk fatty acid profile in laying hens[J]. Anim Nutr, 2017, 3(2): 127-131.

    [39] [39] PERRICONE M, ARACE E, CORBO M R, et al. Bioactivity of essential oils: A review on their interaction with food components[J]. Front Microbiol, 2015, 6: 76.

    [40] [40] The Ministry of Health of the Ministry of Health of the People’s Republic of China GB 29225-2012 National Food Safety Standard for Food Additives-Attapulgite Clay[S]. Beijing: China Standards Publishing House, 2012.

    [41] [41] CHENG H, CHEN J F, TANG S G, et al. Effects of essential oil/palygorskite composite on performance, egg quality, plasma biochemistry, oxidation status, immune response and intestinal morphology of laying hens[J]. Poult Sci, 2022, 101(4): 101632.

    [42] [42] YANG F F, SONG Y M, HUI A P, et al. Facile preparation of organo-modified ZnO/attapulgite nanocomposites loaded with monoammonium glycyrrhizinate via mechanical milling and their synergistic antibacterial effect[J]. Minerals, 2022, 12(3): 364.

    [43] [43] ZHANG H, LU Y S, ZHANG Q A, et al. Structural evolution of palygorskite-rich clay as the nanocarriers of silver nanoparticles for efficient improving antibacterial activity[J]. Colloids Surf A Physicochem Eng Aspects, 2022, 652: 129885.

    [44] [44] LIU J L, GAO Z Y, LIU H, et al. A study on improving the antibacterial properties of palygorskite by using cobalt-doped zinc oxide nanoparticles[J]. Applied Clay Science, 2021, 209: 106112.

    [45] [45] LIU J L, ZHANG K T, GAO Z Y. Synergistic effect of Ag2S nanoparticles and spiny MoS2 anchored on palygorskite for boosting light-driven antibacterial activity[J]. Colloids Surf A Physicochem Eng Aspects, 2022, 649: 129554.

    [46] [46] SONG Y M, YANG F F, MA M T, et al. Green synthesized Se-ZnO/attapulgite nanocomposites using Aloe vera leaf extract: Characterization, antibacterial and antioxidant activities[J]. LWT, 2022, 165: 113762.

    [47] [47] ABDULKAREEM M A, JOUDI M S, ALI A H. Eco-friendly synthesis of low-cost antibacterial agent (brown attapulgite-Ag nanocomposite) for environmental application[J]. Chem Data Collect, 2022, 37: 100814.

    [48] [48] LOBATO-AGUILAR H A, LIZAMA-UC G, URIBE-CALDERON J A, et al. Antibacterial properties and release kinetics of chlorhexidine diacetate from montmorillonite and palygorskite clays[J]. J Biomater Appl, 2020, 34(8): 1052-1058.

    [49] [49] WU T, XIE A G, TAN S Z, et al. Antimicrobial effects of quaternary phosphonium salt intercalated clay minerals on Escherichia coli and Staphylococci aureus[J]. Colloids Surf B Biointerfaces, 2011, 86(1): 232-236.

    [50] [50] FENG F, ZHANG X A, MU B, et al. Attapulgite doped with Fe and Cu nanooxides as peroxidase nanozymes for antibacterial coatings[J]. ACS Appl Nano Mater, 2022, 5(11): 16720-16730.

    [51] [51] JING Y M, MU B, ZHANG M M, et al. Zinc-loaded palygorskite nanocomposites for catheter coating with excellent antibacterial and anti-biofilm properties[J]. 2020, 600: 124965.

    [52] [52] DONG W K, LU Y S, WANG W B, et al. A sustainable approach to fabricate new 1D and 2D nanomaterials from natural abundant palygorskite clay for antibacterial and adsorption[J]. Chem Eng J, 2020, 382: 122984.

    [53] [53] SU Y, CHEN Y P, CHEN L J, et al. Effects of different levels of modified palygorskite supplementation on the growth performance, immunity, oxidative status and intestinal integrity and barrier function of broilers[J]. J Anim Physiol Anim Nutr, 2018, 102(6): 1574-1584.

    [54] [54] AALAEI M, KHATIBJOO A, ZAGHARI M, et al. Comparison of single- and multi-strain probiotics effects on broiler breeder performance, egg production, egg quality and hatchability[J]. Br Poult Sci, 2018, 59(5): 531-538.

    [55] [55] CHALVATZI S, ARSENOS G, TSERVENI-GOUSSI A, et al. Tolerance and efficacy study of palygorskite incorporation in the diet of laying hens[J]. Appl Clay Sci, 2014, 101: 643-647.

    [56] [56] YU L H, LIU J, MAO J Z, et al. Dietary palygorskite clay-adsorbed nano-ZnO supplementation improves the intestinal barrier function of weanling pigs[J]. Front Nutr, 2022, 9: 857898.

    [57] [57] MAO Junzhou, DONG Li, WANG Shunan, et al. Chin J Anim Nutr, 2018, 30(4): 1471-1480.

    [58] [58] YANG W L, CHEN Y P, CHENG Y F, et al. An evaluation of zinc bearing palygorskite inclusion on the growth performance, mineral content, meat quality, and antioxidant status of broilers[J]. Poult Sci, 2016, 95(4): 878-885.

    [59] [59] YAN R, ZHANG L, YANG X, et al. Bioavailability evaluation of zinc-bearing palygorskite as a zinc source for broiler chickens[J]. Appl Clay Sci, 2016, 119: 155-160.

    [60] [60] YANG J H, LEE J H, RYU H J, et al. Drug-clay nanohybrids as sustained delivery systems[J]. Appl Clay Sci, 2016, 130: 20-32.

    [61] [61] DIXIT N, MAURYA S D, SAGAR B P. Sustained release drug delivery system[J]. Indian J Res Pharmacy Biotechnol, 2013, 1(3): 305.

    [62] [62] DING X, ALANI A W, ROBINSON J R. Extended-release and targeted drug delivery systems[M]//The Science and Practice of Pharmacy, Amsterdam: Elsevier, 2006: 939-940.

    [63] [63] DONG J N, CHENG Z N, TAN S W, et al. Clay nanoparticles as pharmaceutical carriers in drug delivery systems[J]. Expert Opin Drug Deliv, 2021, 18(6): 695-714.

    [64] [64] CONTE R, DE LUISE A, VALENTINO A, et al. Hydrogel nanocomposite systems[M]//Nanocarriers for Drug Delivery. Amsterdam: Elsevier, 2019: 319-349.

    [65] [65] DEL CASTILLO CASTRO T, MóNICA M, ORTEGA C, et al. Nanocomposite hydrogels as drug delivery systems[M]//Functional Hydrogels in Drug Delivery. Amsterdam: Elsevier, 2017: 24-51.

    [66] [66] MOUSA M, EVANS N D, OREFFO R O C, et al. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity[J]. Biomaterials, 2018, 159: 204-214.

    [67] [67] SORBY D L, LIU G. Effects of adsorbents on drug absorption II[J]. J Pharm Sci, 1966, 55(5): 504-510.

    [68] [68] STUL M S, VLIERSX D P, UYTTERHOVEN J B. In vitro adsorption-desorption of phenethylamines and phenylimidazoles by a bentonite and a resin[J]. J Pharm Sci, 1984, 73(10): 1372-1375.

    [69] [69] AGUZZI C, CEREZO P, VISERAS C, et al. Use of clays as drug delivery systems: Possibilities and limitations[J]. Appl Clay Sci, 2007, 36(1-3): 22-36.

    [70] [70] THATIPARTI T R, TAMMISHETTI S, NIVASU M V. UV curable polyester polyol acrylate/bentonite nanocomposites: Synthesis, characterization, and drug release[J]. J Biomed Mater Res, 2010, 92B(1): 111-119.

    [71] [71] YANG H X, WANG W B, ZHANG J P, et al. Preparation, characterization, and drug-release behaviors of a pH-sensitive composite hydrogel bead based on guar gum, attapulgite, and sodium alginate[J]. International Journal Polymeric Materials And Polymeric Biomaterials, 2013, 62(7): 369-376.

    [72] [72] LI X M, ZHONG H, LI X R, et al. Synthesis of attapulgite/N-isopropylacrylamide and its use in drug release[J]. Mater Sci Eng C Mater Biol Appl, 2014, 45: 170-175.

    [73] [73] DENG Y Y, XIONG X W, LIU X, et al. Palygorskite combined probiotics improve the laying performance, hatching performance, egg quality, plasma antioxidative status, and immune response of broiler breeders[J]. Ital J Anim Sci, 2021, 20(1): 1292-1301.

    [74] [74] ZHANG C Z, YAO D W, SU Z N, et al. Copper/zinc-modified palygorskite protects against Salmonella typhimurium infection and modulates the intestinal microbiota in chickens[J]. Front Microbiol, 2021, 12: 739348.

    [75] [75] HUANG W, XIAO Y C, SHI X Y. Construction of electrospun organic/inorganic hybrid nanofibers for drug delivery and tissue engineering applications[J]. Adv Fiber Mater, 2019, 1(1): 32-45.

    [76] [76] CHOU S F, CARSON D, WOODROW K A. Current strategies for sustaining drug release from electrospun nanofibers[J]. J Control Release, 2015, 220: 584-591.

    [77] [77] WANG Z, ZHAO Y L, SHEN M W, et al. Antitumor efficacy of doxorubicin-loaded electrospun attapulgite-poly(lactic-co-glycolic acid) composite nanofibers[J]. J Funct Biomater, 2022, 13(2): 55.

    [78] [78] RODRIGUES L A, FIGUEIRAS A, VEIGA F, et al. The systems containing clays and clay minerals from modified drug release: A review[J]. Colloids Surf B Biointerfaces, 2013, 103: 642-651.

    [79] [79] XIAO Y X, ZHENG H Y, DU M, et al. Investigation on the potential application of Na-attapulgite as an excipient in domperidone sustained-release tablets[J]. Molecules, 2022, 27(23): 8266.

    [80] [80] ZHANG Zhe, XU Lei, LI Yue, et al. Modified attapulgite, preparation method thereof and application of modified attapulgite in drug carrier. CN110028077B. 2020-09-04.

    [81] [81] NARAYAN R J. Preface[M]//Encyclopedia of Biomedical Engineering. Amsterdam: Elsevier, 2019:374-378.

    [82] [82] LANNUTTI J, RENEKER D, MA T, et al. Electrospinning for tissue engineering scaffolds[J]. Mater Sci Eng C, 2007, 27(3): 504-509.

    [83] [83] Vehof J W M, Haus M T U, De Ruijter A E, et al. Bone formation in Transforming Growth Factor beta‐1‐loaded titanium fiber mesh implants[J]. Clinical Oral Implants Research, 2002, 13(1): 94-102.

    [84] [84] WUTTICHAROENMONGKOL P, SANCHAVANAKIT N, PAVASANT P, et al. Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles[J]. Macromol Biosci, 2006, 6(1): 70-77.

    [85] [85] XIE X R, SHI X Y, WANG S Y, et al. Effect of attapulgite-doped electrospun fibrous PLGA scaffold on pro-osteogenesis and barrier function in the application of guided bone regeneration[J]. Int J Nanomedicine, 2020, 15: 6761-6777.

    [86] [86] WANG Z, ZHAO Y L, LUO Y, et al. Attapulgite-doped electrospun poly(lactic-co-glycolic acid) nanofibers enable enhanced osteogenic differentiation of human mesenchymal stem cells[J]. RSC Adv, 2015, 5(4): 2383-2391.

    [87] [87] KARAGEORGIOU V, KAPLAN D. Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005, 26(27): 5474-5491.

    [88] [88] DAI T, MA J Y, NI S, et al. Attapulgite-doped electrospun PCL scaffolds for enhanced bone regeneration in rat cranium defects[J]. Biomater Adv, 2022, 133: 112656.

    [89] [89] WANG Z H, HUI A P, ZHAO H B, et al. A novel 3D-bioprinted porous nano attapulgite scaffolds with good performance for bone regeneration[J]. Int J Nanomedicine, 2020, 15: 6945-6960.

    [90] [90] MATAI I, KAUR G, SEYEDSALEHI A, et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering[J]. Biomaterials, 2020, 226: 119536.

    [91] [91] LIU C, QIN W, WANG Y, et al. 3D printed gelatin/sodium alginate hydrogel scaffolds doped with nano-attapulgite for bone tissue repair[J]. Int J Nanomedicine, 2021, 16: 8417-8432.

    [92] [92] J-RBRINK K, NI G, S-NNERGREN H, et al. The humanistic and economic burden of chronic wounds: A protocol for a systematic review[J]. Syst Rev, 2017, 6(1): 15.

    [93] [93] NUSSBAUM S R, CARTER M J, FIFE C E, et al. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds[J]. Value Health, 2018, 21(1): 27-32.

    [94] [94] GOIS DA SILVA M L, FORTES A C, OLIVEIRA M E R, et al. Palygorskite organophilic for dermopharmaceutical application[J]. J Therm Anal Calorim, 2014, 115(3): 2287-2294.

    [95] [95] CAO L H, XIE W J, CUI H Y, et al. Fibrous clays in dermopharmaceutical and cosmetic applications: Traditional and emerging perspectives[J]. Int J Pharm, 2022, 625: 122097.

    [96] [96] DE GOIS DA SILVA M L, FORTES A C, DA ROCHA TOMé A, et al. The effect of natural and organophilic palygorskite on skin wound healing in rats[J]. Braz J Pharm Sci, 2013, 49(4): 729-736.

    [97] [97] GARCíA-VILLéN F, SOUZA I M S, DE MELO BARBOSA R, et al. Natural inorganic ingredients in wound healing[J]. Curr Pharm Des, 2020, 26(6): 621-641.

    [98] [98] GARCíA-VILLéN F, SáNCHEZ-ESPEJO R, BORREGO-SáNCHEZ A, et al. Correlation between elemental composition/mobility and skin cell proliferation of fibrous nanoclay/spring water hydrogels[J]. Pharmaceutics, 2020, 12(9): 891.

    [99] [99] MURUGESAN S, SCHEIBEL T. Copolymer/clay nanocomposites for biomedical applications[J]. Adv Funct Materials, 2020, 30(17): 1908101.

    [100] [100] TENCI M, ROSSI S, AGUZZI C, et al. Carvacrol/clay hybrids loaded into in situ gelling films[J]. Int J Pharm, 2017, 531(2): 676-688.

    [101] [101] ZHANG Q A, ZHANG H, HUI A P, et al. Synergistic effect of glycyrrhizic acid and ZnO/palygorskite on improving chitosan-based films and their potential application in wound healing[J]. Polymers, 2021, 13(22): 3878.

    [102] [102] WANG X M, MU B, ZHANG H, et al. Incorporation of mixed-dimensional palygorskite clay into chitosan/polyvinylpyrrolidone nanocomposite films for enhancing hemostatic activity[J]. Int J Biol Macromol, 2023, 237: 124213.

    [103] [103] LV Guocheng, LIAO Libing, RAO Wenxiu, et al. Conserv Util Miner Resour (in Chinese), 2019, 39(6): 112-120.

    [104] [104] KATTI K S, JASUJA H, KAR S, et al. Nanostructured biomaterials for in vitro models of bone metastasis cancer[J]. Curr Opin Biomed Eng, 2021, 17: 100254.

    [105] [105] KATTI K S, JASUJA H, JASWANDKAR S V, et al. Nanoclays in medicine: A new frontier of an ancient medical practice[J]. Mater Adv, 2022, 3(20): 7484-7500.

    Tools

    Get Citation

    Copy Citation Text

    SUN Wei, WANG Shenjin, LIU Xiaoxi, ZHANG Chenyang, WANG Rong, HAN Mingjun, XIAO Yang, YANG Yan, LIU Wei. Research Progress on Application of Attapulgite in Biomedicine[J]. Journal of the Chinese Ceramic Society, 2024, 52(1): 359

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 18, 2023

    Accepted: --

    Published Online: Jul. 30, 2024

    The Author Email: Chenyang ZHANG (zhangchenyang@csu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics